Spelling suggestions: "subject:"direct drive wind turbine"" "subject:"cirect drive wind turbine""
1 |
A boost current source inverter based generator-converter topology for direct drive wind turbinesSingh, Akanksha January 1900 (has links)
Doctor of Philosophy / Department of Electrical and Computer Engineering / Behrooz Mirafzal / In this dissertation, a new topology for Direct-Drive Wind Turbines (DDWTs) with a new power electronics interface and a low-voltage generator design is presented. In the presented power electronics interface, the grid - side converter is replaced by a boost Current Source Inverter (CSI) which eliminates the required dc-bus capacitors resulting in an increase in the lifetime of DDWTs. The inherently required dc-link inductor for this topology is eliminated by utilizing the inductance of the Permanent Magnet Synchronous Generator (PMSG). The proposed three-phase boost CSI is equipped with Reverse-Blocking IGBTs (RB-IGBT) and the Phasor Pulse Width Modulation (PPWM) switching pattern to provide a 98% efficiency and high boost ratios ([superscript V]LL/V[subscript dc]) up to 3.5 in a single stage. In this dissertation, Phasor Pulse Width Modulation (PPWM) pattern for the boost – CSI is also modified and verified through simulation and experimental results. In order to realize potential capabilities of the boost inverter and to assist its penetration into renewable energy systems, the boost inverter dynamic behaviors are studied in this dissertation. Then, the developed models are verified using circuit simulations and experiments on a laboratory-scale boost – CSI equipped with RB-IGBTs. The developed dynamic models are used to study the stability of the boost – CSI through root locus of small signal poles (eigenvalues) as control inputs and load parameters vary within the boost inverter's operating limits. The dynamic models are also used to design the control schemes for the boost – CSI for both stand-alone and grid-tied modes of operation. The developed controllers of the boost – CSI are verified through simulation and experimental results. In this dissertation, the boost – CSI steady-state characterization equations are also developed and verified. The developed boost – CSI is used to replace the grid - side converter in a DDWT. A reliability analysis on the power electronics interface of an existing and developed topology is presented to demonstrate the increase in the mean time between failures. The boost – CSI enables conversion of a low dc voltage to a higher line-to-line voltage enabling the implementation of a low-voltage generator. This further enables a reduction in the number poles required in DDWT generators. The feasibility of the presented low-voltage generator is investigated through finite element computations. In this dissertation, a 1.5MW low-voltage generator designed for the proposed topology is compared with an existing 1.5MW permanent magnet synchronous generator for DDWTs to demonstrate the reduction in the volume, weight, and amount of permanent magnet materials required in the generator. The feasibility of the developed system is supported by a set of MATLAB/Simulink simulations and laboratory experiments on the closed-loop stand-alone and grid-tied systems.
|
2 |
Efficacité énergétique des machines de production d'électricité / Energy efficiency of large electric power generatorsPloyard, Maxime 29 June 2017 (has links)
Lors de la phase de dimensionnement d’un générateur électrique, des choix préliminaires imposent généralement la topologie. Cette thèse a pour objectif d’apporter une aide décisionnelle au choix des structures de générateurs de fortes puissances. L’intérêt des machines à haute efficacité énergétique est porté par des objectifs environnementaux forts. En conséquence, maîtriser et comprendre l’origine des pertes dans les machines de production d’électricité est un enjeu capital. Ainsi, une méthodologie de calculs de pertes fer est développée pour des générateurs de fortes puissances.Dans les secteurs de la production et conversion d’énergie, les Machines Synchrones à Double Excitation présentent un fort potentiel pour répondre aux défis de la transition énergétique. Dès lors, il est important de quantifier l’impact de ces nouvelles structures par rapport aux solutions existantes. Cette thèse propose une modélisation par méthodes analytiques et semi-analytiques dans l’objectif de concevoir un ensemble de structures de générateurs. La modélisation est également comparée à deux prototypes de fortes puissances, dont un pour une application éolienne à attaque directe.Ensuite, cette modélisation est employée dans un processus de conception par optimisation. Les structures Pareto optimales sont comparées suivant différents cahiers des charges. Ces optimisations permettent de mettre en avant des gains significatifs par rapport aux solutions existantes notamment sur des données statistiques de fonctionnement éolien. / During the design phase of an electrical generator, the topology is generally imposed by preliminary criteria. This thesis aims at providing a decision support for the choice of high power generator structures. The interest for high efficiency machines is driven by strong environmental objectives. Consequently, understanding the origin of losses in power generation machines is a major issue. Thus, a methodology for iron loss calculation is developed for high power generators.In the energy production and conversion sectors, Hybrid Excitation Synchronous Machines have a great potential to respond to the challenges of energy transition. It is important to quantify the impact of these new structures compared with existing solutions. This thesis proposes analytical and lumped models to design a set of generator structures. The modeling approach is also compared with two high power generators, including one for a direct drive wind turbine. Then, this modeling is used in an optimization design process. The optimal Pareto structures are compared according to different specifications. These optimized designs show significant gains compared to the existing solutions, especially on wind profile from a Weibull probability density function.
|
Page generated in 0.0882 seconds