Spelling suggestions: "subject:"direct readout"" "subject:"cirect readout""
1 |
NPP IN-SITU GROUND SYSTEM - BRIDGING TECHNOLOGIES BETWEEN EOS, NPP AND THE FUTUREBrentzel, Kelvin, Harris, Carol, Coronado, Patrick 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / As part of the National Polar-orbiting Operational Environmental Satellite System
(NPOESS) Preparatory Project (NPP), the Direct Readout Laboratory (DRL) of
NASA/GSFC Code 935, is developing the prototype NPP In-Situ Ground System
(NISGS). The NISGS supports earth remote sensing, and its functions bridge from all
EOS satellites to planning for future NASA and interagency launches. The NISGS
solution enables the end user to acquire and process NPP and predecessor instrument
data, and provide a means to make these technologies and data products available to the
Direct Broadcast Community. This document describes the NISGS model, methodology,
and system architecture.
|
2 |
X-ray structures of p22 c2 repressor-dna complexes: the mechansism of direct and indirect readoutWatkins, Jason Derrick 26 August 2008 (has links)
The P22 c2 repressor protein (P22R) binds to DNA sequence-specifically and helps direct the temperate lambdoid bacteriophage P22 to the lysogenic developmental pathway. To gain insight into its DNA binding mechanism, we solved the 1.6 Å x-ray structure of the N-terminal domain (NTD) of P22R in a complex with a DNA fragment containing the synthetic operator sequence [d(ATTTAAGATATCTTAAAT)]2 This operator has an A-T at position 9L and T-A at position 9R and is termed DNA9T.
Van der Waals interactions between protein and DNA appear to confer sequence-specificity. The structure of the P22R NTD – NA9T complex suggests that sequence-specificity arises substantially from interaction of a valine with a complementary binding cleft on the major groove surface of DNA9T. The cleft is formed by four methyl groups on sequential base pairs of 5' TTAA 3'. The valine cleft is intrinsic to the DNA sequence and does not arise from protein-induced DNA conformational change. Protein-DNA hydrogen bonding plays a secondary role in specificity.
|
3 |
Étude de l’assemblage, de la mécanique et de la dynamique des complexes ADN-protéine impliquant le développement d’un modèle « gros grains » / Study assembly, mecanism and dynamic of protein-DNA complexes with coarse-grained modelÉthève, Loic 01 December 2016 (has links)
Les interactions ADN-protéine sont fondamentales dans de nombreux processus biologiques tels que la régulation des gènes et la réparation de l'ADN. Cette thèse est centrée sur l'analyse des propriétés physiques et dynamiques des interfaces ADN-protéine. À partir de l'étude de quatre complexes ADN-protéine, nous avons montré que l'interface ADN-protéine est dynamique et que les ponts salins et liaisons hydrogène se forment et se rompent dans une échelle de temps de l'ordre de la centaine de picosecondes. L'oscillation des chaînes latérales des résidus est dans certains cas capable de moduler la spécificité d'interaction. Nous avons ensuite développé un modèle de protéine gros grains dans le but de décomposer les interactions ADN-protéine en identifiant les facteurs qui modulent la stabilité et la conformation de l'ADN ainsi que les facteurs responsables de la spécificité de reconnaissance ADN-protéine. Notre modèle est adaptable, allant d'un simple volume mimant une protéine à une représentation plus complexe comportant des charges formelles sur les résidus polaires, ou des chaînes latérales à l'échelle atomique dans le cas de résidus clés ayant des comportements particuliers, tels que les cycles aromatiques qui s'intercalent entre les paires de base de l'acide nucléique / DNA-protein interactions are fundamental in many biological processes such as gene regulation and DNA repair. This thesis is focused on an analysis of the physical and dynamic properties of DNA-protein interfaces. In a study of four DNA-protein complexes, we have shown that DNA-protein interfaces are dynamic and that the salt bridges and hydrogen bonds break and reform over a time scale of hundreds of picoseconds. In certain cases, this oscillation of protein side chains is able to modulate interaction specificity. We have also developed a coarse-grain model of proteins in order to deconvolute the nature of protein-DNA interactions, identifying factors that modulate the stability and conformation of DNA and factors responsible for the protein-DNA recognition specificity. The design of our model can be changed from a simple volume mimicking the protein to a more complicated representation by the addition of formal charges on polar residues, or by adding atomic-scale side chains in the case of key residues with more precise behaviors, such as aromatic rings that intercalate between DNA base pairs
|
Page generated in 0.0327 seconds