Spelling suggestions: "subject:"reconversion"" "subject:"electroconversion""
1 |
Optimization of direct bioconversion of cellulose into biofuels: medium improvement, scale-up and use of alternative nutrientsIslam, Rumana 01 1900 (has links)
Despite the long-term economic and environmental benefits of cellulosic biofuel production, low rates of cellulose utilization and products syntheses are major techno-economical barriers to the commercialization. Optimized medium composition and low-cost nutrient source could greatly enhance the feasibility of large-scale biofuels synthesis by direct cellulose fermentation using a consolidated bioprocessing (CBP) approach. This study developed an improved growth medium for Clostridium thermocellum, an excellent cadidate for CBP that utilizes cellulose to produce ethanol, hydrogen, and other value-added biochemicals. An experimental design to determine the importance of nutrient components and concentrations on H2 and ethanol production from cellulose by C. thermocellum initially considered seven growth nutrients. Three most significant components - α-cellulose, yeast extract, and magnesium chloride were investigated in detail for their influence on rates and yields of H2 and ethanol production during cellulose fermentation by C. thermocellum. To explore individual and interactive effects of these nutrients on ethanol and hydrogen (H2) production, a central composite face-centered design and the response surface methodology was applied to predict optimum nutrient compositions for H2 and ethanol production. Experimental verification of predicted optima produced about 3-fold and 4-fold more H2 and ethanol respectively compared with the reference medium. These small-scale results were successfully verified in large-volume (7L), atmospheric cultures. Irrespective of culture conditions, relative improvement in rates and productivities of H2 and ethanol in optimized medium compared with reference medium were consistent with small-volume cultures. Various ethanol distillery co-products were tested for their potentials to replace expensive medium ingredients. Medium prepared with these co-products show excellent ability to suppport cell-growth and production of ethanol and H2 at concentrations equivalent to those generated from the reagent grade medium. Utilization of these low-cost nutrient sources to replace expensive reagent ingredients may potentially contribute to the viability of both grain-based ethanol and cellulosic biofuels. With medium optimization, scale-up and use of low-cost nutrient sources, this study represents one of the very few systematic research approaches to improve direct bioconversion of cellulosic biomass into biofuels.
|
2 |
Optimization of direct bioconversion of cellulose into biofuels: medium improvement, scale-up and use of alternative nutrientsIslam, Rumana 01 1900 (has links)
Despite the long-term economic and environmental benefits of cellulosic biofuel production, low rates of cellulose utilization and products syntheses are major techno-economical barriers to the commercialization. Optimized medium composition and low-cost nutrient source could greatly enhance the feasibility of large-scale biofuels synthesis by direct cellulose fermentation using a consolidated bioprocessing (CBP) approach. This study developed an improved growth medium for Clostridium thermocellum, an excellent cadidate for CBP that utilizes cellulose to produce ethanol, hydrogen, and other value-added biochemicals. An experimental design to determine the importance of nutrient components and concentrations on H2 and ethanol production from cellulose by C. thermocellum initially considered seven growth nutrients. Three most significant components - α-cellulose, yeast extract, and magnesium chloride were investigated in detail for their influence on rates and yields of H2 and ethanol production during cellulose fermentation by C. thermocellum. To explore individual and interactive effects of these nutrients on ethanol and hydrogen (H2) production, a central composite face-centered design and the response surface methodology was applied to predict optimum nutrient compositions for H2 and ethanol production. Experimental verification of predicted optima produced about 3-fold and 4-fold more H2 and ethanol respectively compared with the reference medium. These small-scale results were successfully verified in large-volume (7L), atmospheric cultures. Irrespective of culture conditions, relative improvement in rates and productivities of H2 and ethanol in optimized medium compared with reference medium were consistent with small-volume cultures. Various ethanol distillery co-products were tested for their potentials to replace expensive medium ingredients. Medium prepared with these co-products show excellent ability to suppport cell-growth and production of ethanol and H2 at concentrations equivalent to those generated from the reagent grade medium. Utilization of these low-cost nutrient sources to replace expensive reagent ingredients may potentially contribute to the viability of both grain-based ethanol and cellulosic biofuels. With medium optimization, scale-up and use of low-cost nutrient sources, this study represents one of the very few systematic research approaches to improve direct bioconversion of cellulosic biomass into biofuels.
|
3 |
Design of a 10 MHz Transimpedance Low-Pass Filter with Sharp Roll-Off for a Direct Conversion Wireless ReceiverHodgson, James K. 2009 May 1900 (has links)
A fully-differential base-band transimpedance low-pass filter is designed for use
in a direct conversion wireless receiver. Existing base-band transimpedance amplifiers
(TIA) often utilize single-pole filters which do not provide good stop-band rejection and
may even allow the filter to saturate in the presence of large interferers near the edge of
the pass-band. The designed filter is placed in parallel with an existing single-pole TIA
filter and diverts stop-band current signals away from the existing filter, providing added
rejection and safeguarding the filter from saturating. The presented filter has a
bandwidth of 10 MHz, achieves 35 dB rejection at 50 MHz (25 dB in post-layout
simulations), and can process interferers as large as 10 mA. The circuit is designed in
Jazz 0.18 m CMOS technology, and it is shown, using macromodels, that the design is
scalable to smaller, faster technologies.
|
4 |
Design of a 20MHz Transimpedance Low-pass Filter with an Adapted 3rd Order Inverse Chebyshev ResponseBoakye, Emmanuel 2012 August 1900 (has links)
In Multi-Standard receivers, multiple radios co-exist in close proximity. A desired signal can be accompanied by significantly stronger out-of band interferers or blockers, which can severely degrade a receiver's sensitivity through gain compression of the blocks in the receiver chain. This work presents a new Transimpedance Amplifier (TIA) low-pass filter architecture which seeks to solve the out-of-band blocker problem of the existing architectures.
A higher order filtering is embedded within the TIA in the form of an active feedback to provide more attenuation to out-of-band blockers. The active feedback circuitry feeds back an equivalent amount of current to the input node to cancel out incoming out-of-band blockers while maintaining an acceptable voltage swing at the output of the TIA. The proposed TIA filter has a channel bandwidth of 20MHz, and can processes interferers of +/- 10mA fully differential without saturating the opamps. The maximum single ended voltage swing at all the nodes is +/- 200mV.
All the circuits were designed in IBM 180nm CMOS process with a supply voltage of 1.8V.
|
5 |
Medical Implant Receiver SystemJanuary 2012 (has links)
abstract: The medical industry has benefited greatly by electronic integration resulting in the explosive growth of active medical implants. These devices often treat and monitor chronic health conditions and require very minimal power usage. A key part of these medical implants is an ultra-low power two way wireless communication system. This enables both control of the implant as well as relay of information collected. This research has focused on a high performance receiver for medical implant applications. One commonly quoted specification to compare receivers is energy per bit required. This metric is useful, but incomplete in that it ignores Sensitivity level, bit error rate, and immunity to interferers. In this study exploration of receiver architectures and convergence upon a comprehensive solution is done. This analysis is used to design and build a system for validation. The Direct Conversion Receiver architecture implemented for the MICS standard in 0.18 µm CMOS process consumes approximately 2 mW is competitive with published research. / Dissertation/Thesis / Ph.D. Electrical Engineering 2012
|
6 |
Compact high performance analog CMOS baseband design solutions for multistandard wireless transceiversPark, Seok-Bae 08 August 2006 (has links)
No description available.
|
7 |
[en] DIRECT CONVERSION OF THERMAL ENERGY INTO ELECTRICAL / [pt] CONVERSÃO DIRETA DE ENERGIA TÉRMICA EM ELÉTRICASILVIO CARLOS ANIBAL DE ALMEIDA 15 March 2018 (has links)
[pt] O presente trabalho descreve o desenvolvimento de um gerador termoelétrico cujos termoelementos são obtidos a partir de um composto de dissiliceto de ferro (FeSi2). A originalidade do trabalho reside na simplificação do processo de obtenção do termoelemento e na utilização de matérias-primas com grau de pureza industrial, em contraposição aos processos usuais que utilizam materiais de custo elevado, com alto grau da pureza e sofisticados processos de fabricação. O composto é obtido pelo processo de fusão num forno de indução à vácuo. A forma geométrica do termoelemento é assegurada pelo processo de sinterização. Um processo de recozimento garante a formação da fase Beta, assegurando a existência das propriedades termoelétricas. O coeficiente de Seebeck mostrou-se dependente do tempo de recozimento. Para os materiais desenvolvidos, o termoelemento tipo P apresentou um coeficiente de Seebeck de 250 MV/K e o material tipo N, um coeficiente de 75 MV/K, valores estes que qualificam o material para construção de geradores termoelétricos. Estima-se que o custo de fabricação do material desenvolvido reduziu de oito para dois dólares o custo de fabricação de materiais termoelétricos por watt de eletricidade gerado. Experiências preliminares utilizando a técnica de serigrafia para fabricação de termoelementos parecem confirmar a possibilidade de uma redução ainda maior do custo de fabricação. / [en] This work describes the development of a thermoelectric generator whose thermoelements are made of a new thermoelectric material, FeSi2, an iron disilicide alloy. The originality of this work relies on the simplicity of the process by which the termoelements are obtained and also on the possibility to use a
raw material with industrial purity grade, as opposed to conventional techniques which use costly materials, with a high degree of purity, and sofisticated process of fabrication. The alloy is obtained by a process of fusion in a vacuum induction type furnace. The geometric shape of the thermoelement is obtained by a process of sinterization. An annealing process garantees the formation of the Beta phase, thus assuring the existence of thermoelectric propertyes. The Seebeck coefficient proved to be dependent on the time duration of the annealing. As for the material developed, the P Type material presented an average Seebeck coefficient of 250 MV/K and the N type material, a coefficient of 75 MV/K, these figures qualify the materials for construction of thermoelectric generators. It is estimated that the manufacturing cost of the material developed reduced the cost of thermoelectric materials per watt of electricity generated from eight to two dollars. Preliminary experiments using the silk-scream technique in manufacturing of thermoelements seems to promise an even greater reducting in the manufacturing costs.
|
8 |
A CMOS front end for high linearity zero-if WCDMA receiverAlam, Shaikh Md. Khairul 30 November 2006 (has links)
No description available.
|
9 |
Direct Conversion of Fibroblasts to Hematopoietic ProgenitorsRodriguez, Linda 10 1900 (has links)
<p>Immunodeficient-causing diseases such as HIV and leukemia have no cures, often require meticulous treatments and result in high morbidity or mortality. Although bone marrow transplants are an option for a subset of leukemia patients, the shortage of donors and the requirement for donor matching restricts the efficacy of this treatment option. Therefore there is a prominent clinical need for alternative sources of hematopoietic stem/progentior cells with lymphopoietic potential. Recently we described the direct conversion of human dermal fibroblasts to multilineage hematopoietic progenitors by ectopic expression of OCT4. This direct conversion method was used to assess whether OCT4-transduced fibroblasts had the capacity to derive cells of the lymphoid lineage. This work shows the transient co-expression of CD34 and CD45 of fibroblasts within 7 days of OCT4 transduction followed by stable expression of CD45 on fibroblasts by day 15. The acquisition of hematopoietic markers, however, did not coincide with colony formation as previously described. Furthermore, CD45+ cells that were enriched and cultured in hematopoietic conducive conditions did not acquire co-expression of CD34 as previously shown. Interestingly, CD34 expression was shown to be inversely correlated with OCT4 expression. Therefore the constitutive expression of OCT4 may have (1) inhibited the acquisition of CD34 expression on CD45+ cells (2) downregulated the expression of CD34 on the day 7 CD34+CD45+ fibroblasts, thereby resulting in the transient expression of these markers. Furthermore, this work shows that expression of CD45 on OCT4-transduced fibroblasts is required for survival on the MS5 stromal cell line used to support hematopoietic progenitors with lymphopoietic potential, while supplementation of CD45+ fibroblasts with hematopoietic progenitor supportive conditions resulting in co-expression of CD34 and CD45 is required for acquisition of CD19, a pan-B cell marker on CD45+ fibroblasts. These findings suggest OCT4-transduced fibroblasts have lymphopoietic potential.</p> / Master of Science (MSc)
|
10 |
System Design of a High-Temperature Downhole TransceiverKerrigan, Brannon Michael 12 September 2018 (has links)
The oil and gas industry, aerospace, and automotive industries are constantly pushing technology beyond their current operational boundaries, spurring the need for extreme environment electronics. The oil and gas industry, in particular, is the oldest and largest market for high-temperature electronics, where the operating environment can extend up to 260 degrees Celsius. The electronics currently employed in this field are only rated to 200 degrees Celsius, but with the rise of wideband gap technologies, this could be extended to 250 degrees Celsius or more without the needed for active or passive cooling. This reduces the complexity, weight, and cost of the system while improving reliability. In addition, current downhole telemetry data rates are insufficient for supporting more sophisticated and higher resolution well-logging sensors. Increasing the data rates can also save the industry significant amount of time by decreasing the amount of well-logging excersions and by increasing the logging speed.
Previous work done by this research group saw the prototyping of a high bit rate transceiver operating at 230 MHz - 300 MHz and 230 degrees Celsius; however, at these frequencies, the system could not meet size requirements. Thus, a new high-temperature high data rate transceiver design using the 2.4 GHz - 2.5 GHz ISM band is proposed to miniaturize the design and to allow for IC implementation. The transceiver was designed to meet the minimum specifications necessary to give designers flexibility between power consumption and performance. The performance of the design is simulated using AWR design environment software, which shows the system can support a downlink data rate up to 68 Mbps and an uplink data rate up to 170 Mbps across 10 channels. The effects temperature has on the system performance is also evaluated in the simulation. / Master of Science / The oil and gas industry is currently the largest and oldest market for high-temperature electronics. One of the major applications within this industry for high-temperature electronics is known as well-logging, during which a suite of sensors and systems is lowered into a well to survey the health and geology of the well. Among these sensors and systems, the communication system is one of the most crucial components as it relays real-time data back to the surface during the well-logging operation. Current high-temperature communication systems are capable of operating up to 200 ℃, meeting the operating requirements of current wells. As these wells deplete, however, new wells must be explored, and higher operating temperatures are expected. In addition, the communication systems currently employed fail to meet increasing data rate demands due to the growing complexity of the sensors.
Recent developments in semiconductor technologies have given rise to devices, which can increase the operating temperature of electronics up to 250 ℃ while meeting demands for high data rate communication systems. Previous work has leveraged these devices to prototype such a system; however, the proof-of-concept failed to meet size and weight restrictions of practical systems. Therefore, a new system design for a high-temperature high data rate communication system is proposed. The system operates at 2.4 – 2.5 GHz to miniaturize the circuits and make chip implementation possible. The impacts of temperature on the system are investigated and the system performance is simulated within its intended operating temperature range. Developments from this research can be extended to the automotive and aerospace industries, where demand for high-temperature electronics is growing.
|
Page generated in 0.0537 seconds