• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analog Baseband Implementation of a Wideband Observation Receiver for RF Applications

Svensson, Gustaf January 2016 (has links)
During the thesis, a two-staged analog baseband circuit incorporating a passive analog filter and a wideband voltage amplifier were successfully designed, implemented in an IC mask layout in a 65nm CMOS technology, and joined with a previously designed analog front-end design to form a wideband observation receiver. The baseband circuit is capable of receiving an IF bandwidth up to 990MHz produced by the analog front-end using low-side injection. The final circuit shows high IMD3 of at least 90 dBc. The voltage amplifier delivers a voltage amplification of 15 dB with around 0.08 dB amplitude precision over the bandwidth, while the passive filter is capable of a passband amplitude precision of 0.67 dB over the bandwidth, while effectively suppress signal images created by the mixer with at least 60 dBc. Both stages were realized in an IC mask layout, in addition, the filter layout were simulated using an EM simulator.
2

Compact high performance analog CMOS baseband design solutions for multistandard wireless transceivers

Park, Seok-Bae 08 August 2006 (has links)
No description available.
3

Analog Baseband Filters and Mixed Signal Circuits for Broadband Receiver Systems

Kulkarni, Raghavendra Laxman 2011 December 1900 (has links)
Data transfer rates of communication systems continue to rise fueled by aggressive demand for voice, video and Internet data. Device scaling enabled by modern lithography has paved way for System-on-Chip solutions integrating compute intensive digital signal processing. This trend coupled with demand for low power, battery-operated consumer devices offers extensive research opportunities in analog and mixed-signal designs that enable modern communication systems. The first part of the research deals with broadband wireless receivers. With an objective to gain insight, we quantify the impact of undesired out-band blockers on analog baseband in a broadband radio. We present a systematic evaluation of the dynamic range requirements at the baseband and A/D conversion boundary. A prototype UHF receiver designed using RFCMOS 0.18[mu]m technology to support this research integrates a hybrid continuous- and discrete-time analog baseband along with the RF front-end. The chip consumes 120mW from a 1.8V/2.5V dual supply and achieves a noise figure of 7.9dB, an IIP3 of -8dBm (+2dbm) at maximum gain (at 9dB RF attenuation). High linearity active RC filters are indispensable in wireless radios. A novel feed-forward OTA applicable to active RC filters in analog baseband is presented. Simulation results from the chip prototype designed in RFCMOS 0.18[mu]m technology show an improvement in the out-band linearity performance that translates to increased dynamic range in the presence of strong adjacent blockers. The second part of the research presents an adaptive clock-recovery system suitable for high-speed wireline transceivers. The main objective is to improve the jitter-tracking and jitter-filtering trade-off in serial link clock-recovery applications. A digital state-machine that enables the proposed mixed-signal adaptation solution to achieve this objective is presented. The advantages of the proposed mixed-signal solution operating at 10Gb/s are supported by experimental results from the prototype in RFCMOS 0.18[mu]m technology.

Page generated in 0.0481 seconds