• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Fabrication of High-Speed 25Gb/s Directly Modulated DFB Semiconductor Laser Diode

Wu, Yu-lun 15 August 2012 (has links)
With a rapid increase in information capacity of Internet access, high-speed, highly-efficiency, and cost-effectiveness laser source for optical fiber communication is required. High-speed 25Gb/s directly modulated laser is essential of this communication range, because of its simple structure, direct-modulation characteristics, low cost, and integration capability for wavelength division multiplexing (WDM) system, and moreover, it can achieved 100Gb/s data transmission by four channel module system. In this work, data modulation speed of 25Gb/s direct modulation DFB laser has been achieved. By employing high-speed coplanar waveguide structure with semi-insulating substrate, high-speed with f3dB > 20GHz has been demonstrated. By the electrical reflection measurement, it confirmed that the high-speed direction modulation can be realized through reduction of electrical parasitics. The laser chips is measured under continuous-wave mode at room temperature. In 1300nm and 1550nm wavelength device, slope efficiency obtained by taper fiber coupled of 0.045 and 0.07mW/mA respectively, output power up to 2.73 and 3.96mW/facet at 60mA. The Side Mode Suppression Ratio was greater than 35dB. 3dB bandwidth of greater than 16GHz and 20.5GHz, relaxation oscillation frequency of 12GHz and 16.6GHz. Finally, clearly back-to-back 25Gb/s eye diagram and error-floor-free performance were obtained.

Page generated in 0.1044 seconds