Spelling suggestions: "subject:"dirichlet control"" "subject:"dirichlet coontrol""
1 |
Finite Element Analysis of Interior and Boundary Control ProblemsChowdhury, Sudipto January 2016 (has links) (PDF)
The primary goal of this thesis is to study finite element based a priori and a posteriori error estimates of optimal control problems of various kinds governed by linear elliptic PDEs (partial differential equations) of second and fourth orders. This thesis studies interior and boundary control (Neumann and Dirichlet) problems.
The initial chapter is introductory in nature. Some preliminary and fundamental results of finite element methods and optimal control problems which play key roles for the subsequent analysis are reviewed in this chapter. This is followed by a brief literature survey of the finite element based numerical analysis of PDE constrained optimal control problems. We conclude the chapter with a discussion on the outline of the thesis.
An abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed in the second chapter. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of p p - interior penalty methods for a boundary control problem as well as a distributed control problem governed by the bi-harmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis.
In the third chapter, an alternative energy space based approach is proposed for the Dirichlet boundary control problem and then a finite element based numerical method is designed and analyzed for its numerical approximation. A priori error estimates of optimal order in the energy norm and the m norm are derived. Moreover, a reliable and efficient a posteriori error estimator is derived with the help an auxiliary problem.
An energy space based Dirichlet boundary control problem governed by bi-harmonic equation is investigated and subsequently a l y - interior penalty method is proposed and analyzed for it in the fourth chapter. An optimal order a priori error estimate is derived under the minimal regularity conditions. The abstract error estimate guarantees optimal order of convergence whenever the solution has minimum regularity. Further an optimal order l l norm error estimate is derived.
The fifth chapter studies a super convergence result for the optimal control of an interior control problem with Dirichlet cost functional and governed by second order linear elliptic PDE. An optimal order a priori error estimate is derived and subsequently a super convergence result for the optimal control is derived. A residual based reliable and efficient error estimators are derived in a posteriori error control for the optimal control.
Numerical experiments illustrate the theoretical results at the end of every chapter. We conclude the thesis stating the possible extensions which can be made of the results presented in the thesis with some more problems of future interest in this direction.
|
2 |
Study of Optimal Control Problems in a Domain with Rugose Boundary and HomogenizationSardar, Bidhan Chandra January 2016 (has links) (PDF)
Mathematical theory of partial differential equations (PDEs) is a pretty old classical area with wide range of applications to almost every branch of science and engineering. With the advanced development of functional analysis and operator theory in the last century, it became a topic of analysis. The theory of homogenization of partial differential equations is a relatively new area of research which helps to understand the multi-scale phenomena which has tremendous applications in a variety of physical and engineering models, like in composite materials, porous media, thin structures, rapidly oscillating boundaries and so on. Hence, it has emerged as one of the most interesting and useful subject to study for the last few decades both as a theoretical and applied topic.
In this thesis, we study asymptotic analysis (homogenization) of second-order partial differential equations posed on an oscillating domain. We consider a two dimensional oscillating domain (comb shape type) consisting of a fixed bottom region and an oscillatory (rugose) upper region. We introduce optimal control problems for the Laplace equation. There are mainly two types of optimal control problems; namely distributed control and boundary control. For distributed control problems in the oscillating domain, one can apply control on the oscillating part or on the fixed part and similarly for boundary control problem (control on the oscillating boundary or on the fixed part the boundary). We consider all the four cases, namely distributed and boundary controls both on the oscillating part and away from the oscillating part.
The present thesis consists of 8 chapters. In Chapter 1, a brief introduction to homogenization and optimal control is given with relevant references. In Chapter 2, we introduce the oscillatory domain and define the basic unfolding operators which will be used throughout the thesis. Summary of the thesis is given in Chapter 3 and future plan in Chapter 8. Our main contribution is contained in Chapters 4-7.
In chapters 4 and 5, we study the asymptotic analysis of optimal control problems namely distributed and boundary controls, respectively, where the controls act away from the oscillating part of the domain. We consider both L2 cost functional as well as Dirichlet (gradient type) cost functional. We derive homogenized problem and introduce the limit optimal control problems with appropriate cost functional. Finally, we show convergence of the optimal solution, optimal state and associate adjoint solution. Also convergence of cost-functional.
In Chapter 6, we consider the periodic controls on the oscillatory part together with Neumann condition on the oscillating boundary. One of the main contributions is the characterization of the optimal control using unfolding operator. This characterization is new and also will be used to study the limiting analysis of the optimality system.
Chapter 7 deals with the boundary optimal control problem, where the control is applied through Neumann boundary condition on the oscillating boundary with a suitable scaling parameter. To characterize the optimal control, we introduce boundary unfolding operators which we consider as a novel approach. This characterization is used in the limiting analysis. In the limit, we obtain two limit problems according to the scaling parameters. In one of the limit optimal control problem, we observe that it contains three controls namely; a distributed control, a boundary control and an interface control.
|
Page generated in 0.0414 seconds