• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 46
  • 36
  • 23
  • 10
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 375
  • 193
  • 132
  • 99
  • 77
  • 58
  • 52
  • 42
  • 37
  • 36
  • 36
  • 36
  • 33
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Design Methodology for a High Power Density, Voltage Boost, Resonant DC-DC converter

Gafford, James Robert 06 August 2005 (has links)
A full-bridge, parallel-loaded, resonant, zero current/zero voltage switching converter has been developed for DC-DC voltage transformation. The power supply was used to condition power sourced by a 28-V, 400-A Neihoff alternator installed in a HMMWV that delivered power to a 5-kW mobile radar. This design focuses on achieving maximum power density at reasonable efficiency (i.e. > 80%) by operating at the highest resonant and switching frequencies possible. A resonant frequency of 392-kHz was achieved while providing rated power. The high resonant frequency was facilitated by the development of an extremely low inductance layout (< 20 nH) capable of conducting the high resonant currents associated with this converter topology. A design methodology is presented for parallel-loaded, resonant voltage boost converters utilizing the development of a converter prototype as a basis. The experimental results are presented as validation of the methodology.
22

New Transport Capabilities and Timesteppers for a Discontinuous Galerkin Wave Model

Sebian, Rachel A. 19 September 2016 (has links)
No description available.
23

Multilevel Space Vector PWM for Multilevel Coupled Inductor Inverters

Vafakhah, Behzad 06 1900 (has links)
A multilevel Space Vector PWM (SVPWM) technique is developed for a 3-level 3-phase PWM Voltage Source Inverter using a 3-phase coupled inductor to ensure high performance operation. The selection of a suitable PWM switching scheme for the Coupled Inductor Inverter (CII) topology should be based on the dual requirements for a high-quality multilevel PWM output voltage together with the need to minimize high frequency currents and associated losses in the coupled inductor and the inverter switches. Compared to carrier-based multilevel PWM schemes, the space vector techniques provide a wider variety of choices of the available switching states and sequences. The precise identification of pulse placements in the SVPWM method is used to improve the CII performance. The successful operation of the CII topology over the full modulation range relies on selecting switching states where the coupled inductor presents a low winding current ripple and a high effective inductance between the upper and lower switches in each inverter leg. In addition to these requirements, the CII operation is affected by the imbalance inductor common mode dc current. When used efficiently, SVPWM allows for an appropriate balance between the need to properly manage the inductor winding currents and to achieve harmonic performance gains. A number of SVPWM strategies are developed, and suitable switching states are selected for these methods. Employing the interleaved PWM technique by using overlapping switching states, the interleaved Discontinuous SVPWM (DSVPWM) method, compared to other proposed SVPWM methods, doubles the effective switching frequency of the inverter outputs and, as a result, offers superior performance for the CII topology by reducing the inductor losses and switching losses. The inverter operation is examined by means of simulation and experimental testing. The experimental performance comparison is obtained for different PWM switching patterns. The inverter performance is affected by high-frequency inductor current ripple; the excessive inductor losses are reduced by the DSVPWM method. Additional experimental test results are carried out to obtain the inverter performance as a variable frequency drive when operated in steady-state and during transient conditions. The CII topology is shown to have great potential for variable speed drives. / Power Engineering and Power Electronics
24

Multilevel Space Vector PWM for Multilevel Coupled Inductor Inverters

Vafakhah, Behzad Unknown Date
No description available.
25

Discontinuous Galerkin methods for resolving non linear and dispersive near shore waves

Panda, Nishant 23 October 2014 (has links)
Near shore hydrodynamics has been an important research area dealing with coastal processes. The nearshore coastal region is the region between the shoreline and a fictive offshore limit which usually is defined as the limit where the depth becomes so large that it no longer influences the waves. This spatially limited but highly energetic zone is where water waves shoal, break and transmit energy to the shoreline and are governed by highly dispersive and non-linear effects. An accurate understanding of this phenomena is extremely useful, especially in emergency situations during hurricanes and storms. While the shallow water assumption is valid in regions where the characteristic wavelength exceeds a typical depth by orders of magnitude, Boussinesq-type equations have been used to model near-shore wave motion. Unfortunately these equations are complex system of coupled non-linear and dispersive differential equations that have made the developement of numerical approximations extremely challenging. In this dissertation, a local discontinuous Galerkin method for Boussinesq-Green Naghdi Equations is presented and validated against experimental results. Currently Green-Naghdi equations have many variants. We develop a numerical method in one horizontal dimension for the Green-Naghdi equations based on rotational characteristics in the velocity field. Stability criterion is also established for the linearized Green-Naghdi equations and a careful proof of linear stability of the numerical method is carried out. Verification is done against a linearized standing wave problem in flat bathymetry and h,p (denoted by K in this thesis) error rates are plotted. The numerical method is validated with experimental data from dispersive and non-linear test cases. / text
26

Compatible Subdomain Level Isotropic/Anisotropic Discontinuous Galerkin Time Domain (DGTD) Method for Multiscale Simulation

Ren, Qiang January 2015 (has links)
<p>Domain decomposition method provides a solution for the very large electromagnetic</p><p>system which are impossible for single domain methods. Discontinuous Galerkin</p><p>(DG) method can be viewed as an extreme version of the domain decomposition,</p><p>i.e., each element is regarded as one subdomain. The whole system is solved element</p><p>by element, thus the inversion of the large global system matrix is no longer necessary,</p><p>and much larger system can be solved with the DG method compared to the</p><p>continuous Galerkin (CG) method.</p><p>In this work, the DG method is implemented on a subdomain level, that is, each subdomain contains multiple elements. The numerical flux only applies on the</p><p>interfaces between adjacent subdomains. The subodmain level DG method divides</p><p>the original large global system into a few smaller ones, which are easier to solve,</p><p>and it also provides the possibility of parallelization. Compared to the conventional</p><p>element level DG method, the subdomain level DG has the advantage of less total</p><p>DoFs and fexibility in interface choice. In addition, the implicit time stepping is </p><p>relatively much easier for the subdomain level DG, and the total CPU time can be</p><p>much less for the electrically small or multiscale problems.</p><p>The hybrid of elements are employed to reduce the total DoF of the system.</p><p>Low-order tetrahedrons are used to catch the geometry ne parts and high-order</p><p>hexahedrons are used to discretize the homogeneous and/or geometry coarse parts.</p><p>In addition, the non-conformal mesh not only allow dierent kinds of elements but</p><p>also sharp change of the element size, therefore the DoF can be further decreased.</p><p>The DGTD method in this research is based on the EB scheme to replace the</p><p>previous EH scheme. Dierent from the requirement of mixed order basis functions</p><p>for the led variables E and H in the EH scheme, the EB scheme can suppress the</p><p>spurious modes with same order of basis functions for E and B. One order lower in</p><p>the basis functions in B brings great benets because the DoFs can be signicantly</p><p>reduced, especially for the tetrahedrons parts.</p><p>With the basis functions for both E and B, the EB scheme upwind </p><p>ux and</p><p>EB scheme Maxwellian PML, the eigen-analysis and numerical results shows the</p><p>eectiveness of the proposed DGTD method, and multiscale problems are solved</p><p>eciently combined with the implicit-explicit hybrid time stepping scheme and multiple</p><p>kinds of elements.</p><p>The EB scheme DGTD method is further developed to allow arbitrary anisotropic</p><p>media via new anisotropic EB scheme upwind </p><p>ux and anisotropic EB scheme</p><p>Maxwellian PML. The anisotropic M-PML is long time stable and absorb the outgoing</p><p>wave eectively. A new TF/SF boundary condition is brought forward to</p><p>simulate the half space case. The negative refraction in YVO4 bicrystal is simulated</p><p>with the anisotropic DGTD and half space TF/SF condition for the rst time with</p><p>numerical methods.</p> / Dissertation
27

Elektromagnetická indukce: 3-D modelování nespojitou Galerkinovou metodou / Elektromagnetická indukce: 3-D modelování nespojitou Galerkinovou metodou

Čochner, Martin January 2013 (has links)
This work deals with numerical modeling of electromagnetic induction in 3D environment with heterogeneous conductivity. We develop a program to solve Maxwell's equations in quasistatic approximation by using Continuous and Discontinuous Finite Elements. Their implementation in the numerical library deal.ii is discussed. The obtained numerical results are compared with each other and also with a quasianalytic solution for an environment with 1D heterogeneous conductivity. We discuss different numerical methods, limits of our code for practical use and possible future enhancements.
28

Bifurcações de campos vetoriais descontínuos / Bifurcations of discontinuous vector fields

Maciel, Anderson Luiz 14 August 2009 (has links)
Seja M um conjunto compacto e conexo do plano que seja a união dos subconjuntos conexos N e S. Seja Z_L=(X_L,Y_L) uma família a um parâmetro de campos vetoriais descontínuos, onde X_L está definida em N e Y_L em S. Ambos os campos X_L e Y_L, assim como as suas dependências em L, são suaves i. e. de classe C^\\infty; a descontinuidade acontece na fronteira comum entre N e S. O objetivo deste trabalho é estudar as bifurcações que ocorrem em certas famílias de campos vetoriais descontínuos seguindo as convenções de Filippov. Aplicando o método da regularização, introduzido por Sotomayor e Teixeira e posteriormente aprofundado por Sotomayor e Machado à família de campos vetoriais descontínuos Z_L obtemos uma família de campos vetoriais suaves que é próxima da família descontínua original. Usamos esta técnica de regularização para estudar, por comparação com os resultados clássicos da teoria suave, as bifurcações que ocorrem nas famílias de campos vetoriais descontínuos. Na literatura há uma lista de bifurcações de codimensão um, no contexto de Filippov, apresentada mais completamente, no artigo de Yu. A. Kuznetsov, A. Gragnani e S. Rinaldi, One-Parameter Bifurcations in Planar Filippov Systems, Int. Journal of Bifurcation and Chaos, vol. 13, No. 8: 2157--2188, (2003). Alguns dos casos dessa lista já eram conhecidos por Kozlova, Filippov e Machado. Neste trabalho nos propomos a estudar as bifurcações de alguns dos casos, apresentados no artigo de Kuznetsov et. al, através do método da regularização dessas famílias. Nesta Tese consubstanciamos matematicamente a seguinte conclusão: As bifurcações das famílias descontínuas analisadas ficam completamente conhecidas através das bifurcações apresentadas pelas respectivas famílias regularizadas, usando recursos da teoria clássica suave. / Let M be a connected and compact set of the plane which is the union of the connected subsets N and S. Let Z_L=(X_L,Y_L) be a one-parameter family of discontinuous vector fields, where X_L is defined on N and Y_L on S. The two fields X_L, Y_L and their dependences on L are smooths, i. e., are of C^\\infty class; the discontinuity happens in the common boundary of N and S. The objective of this work is to study the bifurcations which occurs in certains families of discontinuous vector fields following the conventions of Filippov. Applying the regularization method, introduced by Sotomayor and Teixeira, to the family of discontinuous vector fields Z_L we obtain a family of regular vector fields which is close to the original family of discontinuous vector fields. In the literature there is a list of codimension one bifurcation, in the Filippov sense, presented more completely, in the article of Yu. A. Kuznetsov, A. Gragnani e S. Rinaldi, One-Parameter Bifurcations in Planar Filippov Systems, Int. Journal of Bifurcation and Chaos, vol. 13, No. 8: 2157--2188, (2003). Some of those cases was already known by Kozlova, Filippov and Machado. In this work we propose to study the bifurcations of some of those cases, presented in the article of Kuznetsov et. al, by the method of regularization of those families. In this thesis we justify mathematically the following conclusion: The bifurcations of the analysed discontinuous families are completelly known by the bifurcations contained in the respective regularized families, using the methods of the classical theory of regular vector fields.
29

Bifurcações de campos vetoriais descontínuos / Bifurcations of discontinuous vector fields

Anderson Luiz Maciel 14 August 2009 (has links)
Seja M um conjunto compacto e conexo do plano que seja a união dos subconjuntos conexos N e S. Seja Z_L=(X_L,Y_L) uma família a um parâmetro de campos vetoriais descontínuos, onde X_L está definida em N e Y_L em S. Ambos os campos X_L e Y_L, assim como as suas dependências em L, são suaves i. e. de classe C^\\infty; a descontinuidade acontece na fronteira comum entre N e S. O objetivo deste trabalho é estudar as bifurcações que ocorrem em certas famílias de campos vetoriais descontínuos seguindo as convenções de Filippov. Aplicando o método da regularização, introduzido por Sotomayor e Teixeira e posteriormente aprofundado por Sotomayor e Machado à família de campos vetoriais descontínuos Z_L obtemos uma família de campos vetoriais suaves que é próxima da família descontínua original. Usamos esta técnica de regularização para estudar, por comparação com os resultados clássicos da teoria suave, as bifurcações que ocorrem nas famílias de campos vetoriais descontínuos. Na literatura há uma lista de bifurcações de codimensão um, no contexto de Filippov, apresentada mais completamente, no artigo de Yu. A. Kuznetsov, A. Gragnani e S. Rinaldi, One-Parameter Bifurcations in Planar Filippov Systems, Int. Journal of Bifurcation and Chaos, vol. 13, No. 8: 2157--2188, (2003). Alguns dos casos dessa lista já eram conhecidos por Kozlova, Filippov e Machado. Neste trabalho nos propomos a estudar as bifurcações de alguns dos casos, apresentados no artigo de Kuznetsov et. al, através do método da regularização dessas famílias. Nesta Tese consubstanciamos matematicamente a seguinte conclusão: As bifurcações das famílias descontínuas analisadas ficam completamente conhecidas através das bifurcações apresentadas pelas respectivas famílias regularizadas, usando recursos da teoria clássica suave. / Let M be a connected and compact set of the plane which is the union of the connected subsets N and S. Let Z_L=(X_L,Y_L) be a one-parameter family of discontinuous vector fields, where X_L is defined on N and Y_L on S. The two fields X_L, Y_L and their dependences on L are smooths, i. e., are of C^\\infty class; the discontinuity happens in the common boundary of N and S. The objective of this work is to study the bifurcations which occurs in certains families of discontinuous vector fields following the conventions of Filippov. Applying the regularization method, introduced by Sotomayor and Teixeira, to the family of discontinuous vector fields Z_L we obtain a family of regular vector fields which is close to the original family of discontinuous vector fields. In the literature there is a list of codimension one bifurcation, in the Filippov sense, presented more completely, in the article of Yu. A. Kuznetsov, A. Gragnani e S. Rinaldi, One-Parameter Bifurcations in Planar Filippov Systems, Int. Journal of Bifurcation and Chaos, vol. 13, No. 8: 2157--2188, (2003). Some of those cases was already known by Kozlova, Filippov and Machado. In this work we propose to study the bifurcations of some of those cases, presented in the article of Kuznetsov et. al, by the method of regularization of those families. In this thesis we justify mathematically the following conclusion: The bifurcations of the analysed discontinuous families are completelly known by the bifurcations contained in the respective regularized families, using the methods of the classical theory of regular vector fields.
30

Planning for discontinuities

Thomas, Ramon L January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Alfred P. Sloan School of Management, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND DEWEY. / Bibliography: leaves 129-132. / by Ramon L. Thomas. / M.S.

Page generated in 0.0762 seconds