• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The sustainability and development of Hong Kong's land transport system /

Flint, Reuben David. January 1999 (has links)
Thesis (M.A.)--University of Hong Kong, 1999. / Includes bibliographical references (leaves 112-114).
2

The sustainability and development of Hong Kong's land transport system

Flint, Reuben David. January 1999 (has links)
Thesis (M.A.)--University of Hong Kong, 1999. / Includes bibliographical references (leaves 112-114). Also available in print.
3

The Role of Colony Size in the Resistance and Tolerance of Scleractinian Corals to Bleaching Caused by Thermal Stress

Charpentier, Bernadette 25 February 2014 (has links)
In 2005 and 2010, high sea surface temperatures caused widespread coral bleaching on Jamaica’s north coast reefs. Three shallow (9m) reef sites were surveyed during each event to quantify the prevalence and intensity of coral bleaching. In October 2005, 29-57% of the colonies surveyed were bleached. By April 2006, 10% of the corals remained pale/partially bleached. Similarly, in October 2010, 23-51% of corals surveyed at the same sites were bleached. By April 2011, 12% of the colonies remained pale/partially bleached. Follow-up surveys revealed low coral mortality following both events, with an overall mean of 4% partial colony mortality across all species and sites observed in April 2006, and 2% in April 2011. Mixed effects models were used to quantify the relationship between colony size and (a) bleaching intensity, and (b) bleaching related mortality among coral species. The bleaching intensity model explained 51% of the variance in the bleaching response observed during the two events. Of this 51%, fixed effects accounted for ~26% of the variance, 17% of which was attributed to species-specific susceptibility to bleaching , 5% to colony size, <1% colony morphology and 4% to the difference in bleaching intensity between the two events. The random factor (site) accounted for the remaining ~25% of the variance. The mortality model explained 16% of the variance in post bleaching mortality with fixed effects, including colony size, morphology and species explaining ~11% of the variance, and the random effect (site) explaining 5%. On average, there was a twofold difference in bleaching intensity between the smallest and the largest size classes. Modelling the relationship between colony level characteristics and site-specific environmental factors on coral species’ susceptibility to thermal stress can shed light on community level responses to future disturbances.
4

The Role of Colony Size in the Resistance and Tolerance of Scleractinian Corals to Bleaching Caused by Thermal Stress

Charpentier, Bernadette January 2014 (has links)
In 2005 and 2010, high sea surface temperatures caused widespread coral bleaching on Jamaica’s north coast reefs. Three shallow (9m) reef sites were surveyed during each event to quantify the prevalence and intensity of coral bleaching. In October 2005, 29-57% of the colonies surveyed were bleached. By April 2006, 10% of the corals remained pale/partially bleached. Similarly, in October 2010, 23-51% of corals surveyed at the same sites were bleached. By April 2011, 12% of the colonies remained pale/partially bleached. Follow-up surveys revealed low coral mortality following both events, with an overall mean of 4% partial colony mortality across all species and sites observed in April 2006, and 2% in April 2011. Mixed effects models were used to quantify the relationship between colony size and (a) bleaching intensity, and (b) bleaching related mortality among coral species. The bleaching intensity model explained 51% of the variance in the bleaching response observed during the two events. Of this 51%, fixed effects accounted for ~26% of the variance, 17% of which was attributed to species-specific susceptibility to bleaching , 5% to colony size, <1% colony morphology and 4% to the difference in bleaching intensity between the two events. The random factor (site) accounted for the remaining ~25% of the variance. The mortality model explained 16% of the variance in post bleaching mortality with fixed effects, including colony size, morphology and species explaining ~11% of the variance, and the random effect (site) explaining 5%. On average, there was a twofold difference in bleaching intensity between the smallest and the largest size classes. Modelling the relationship between colony level characteristics and site-specific environmental factors on coral species’ susceptibility to thermal stress can shed light on community level responses to future disturbances.
5

Commuting costs in Hong Kong with reference to residents in Discovery Bay

Wong, Sau-kuen, 黃秀娟 January 2003 (has links)
published_or_final_version / abstract / toc / Transport Policy and Planning / Master / Master of Arts in Transport Policy and Planning
6

Management company's role & effectiveness in community building

Ng, Lin-chu, Julie., 吳蓮珠. January 1998 (has links)
published_or_final_version / Housing Management / Master / Master of Housing Management

Page generated in 0.0409 seconds