• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Algumas propriedades de autômatos celulares unidimensionais conservativos e reversíveis

Oliveira, Angelo Schranko de 28 January 2009 (has links)
Made available in DSpace on 2016-04-18T21:39:48Z (GMT). No. of bitstreams: 2 Angelo Schranko de Oliveira1.pdf: 925871 bytes, checksum: 812a592f67dbda8b36f5168fbd5f2598 (MD5) Angelo Schranko de Oliveira2.pdf: 2918106 bytes, checksum: 0969a0bf28b426ce84fe4595d80a73c2 (MD5) Previous issue date: 2009-01-28 / Wolfram Research, Inc. / Cellular automata (CAs) can be defined as discrete dynamical systems over n-dimensional networks of locally connected components, whose evolution occur in a discrete, synchronous and homogeneous fashion. Among their several applications, they have been used as a tool for complex systems modeling governed by fundamental laws of conservation (number-conserving cellular automata) or reversibility (reversible cellular automata). Another fundamental property that can be observed in CAs is regarding to their linearity (linear cellular automata) or nonlinearity. Usually, linear phenomena present low dynamic complexity, however, nonlinear phenoma can present complex behaviours like sensitive dependence on initial conditions and routes to chaos. This work focuses on investigating properties of cellular automata belonging to the intersection of those four classes, namely, reversible, number-conserving, and linear or nonlinear cellular automata. After presenting basic definitions, the notions of number-conserving cellular automata, conservation degree and reversibility are reviewed. Following, a dynamical characterisation parameter which relates the reversibility property of a onedimensional cellular automaton and the pre-images of their basic blocks is introduced, and some proofs of its general properties are given. Empirical observations herein suggest that a cellular automaton is reversible and number-conserving if, and only if, its local transition function is a composition of the local transition functions of the reversible, number-conserving cellular automata with neighbourhood size n=2; such an observation was drawn for neighbourhood sizes n∈{2, 3, 4, 5, 6} and number of states q=2; n∈{2, 3} and q=3; n∈{2, 3} and q=4. A proof for such a conjecture would allow the enumeration between neighbourhood lengths and the quantity of reversible, numberconserving cellular automata in the corresponding space, which can be easily identified by working out the compositions of the local transition functions with n=2. Finally, some relationships between reversible, number-conserving, linear and nonlinear CA rules, their spatio-temporal diagrams and basin of attraction fields are presented. / Autômatos celulares (ACs) podem ser definidos como sistemas dinâmicos sobre redes ndimensionais de componentes localmente conectados, cuja evolução ocorre de forma discreta, síncrona e homogênea. Dentre suas diversas aplicações, têm sido utilizados como ferramenta para modelagem de sistemas complexos regidos por leis fundamentais de conservação (autômatos celulares conservativos) ou reversibilidade (autômatos celulares reversíveis). Outra propriedade fundamental que pode ser observada nos ACs diz respeito à sua linearidade (autômatos celulares lineares) ou nãolinearidade. Fenômenos lineares normalmente apresentam menor complexidade dinâmica, enquanto fenômenos não-lineares podem apresentar propriedades tais como sensibilidade às condições iniciais e rotas para caos. O presente trabalho concentra-se na investigação de propriedades de autômatos celulares unidimensionais pertencentes à interseção dessas quatro classes, isto é, autômatos celulares unidimensionais conservativos, reversíveis, e lineares ou não-lineares. Após definições básicas, são revisitados os conceitos de conservabilidade e reversibilidade. Em seguida, introduz-se um parâmetro de caracterização dinâmica que relaciona a distribuição do número de pré-imagens dos blocos básicos à reversibilidade de autômatos celulares unidimensionais e apresentam-se algumas demonstrações decsuas propriedades gerais. Observações empíricas aqui realizadas sugerem que um autômato celular unidimensional é conservativo e reversível se, e somente se, sua função local de transição de estados é uma composição das funções locais de transição de estado dos autômatos celulares conservativos e reversíveis de vizinhança de comprimento n=2; tal observação foi constatada para vizinhanças de comprimento n∈{2, 3, 4, 5, 6} e quantidade de estados q=2; n∈{2, 3} e q=3; n∈{2, 3} e q=4. Uma demonstração para tal conjectura permitiria estabelecer uma enumeração entre os comprimentos das vizinhanças e a quantidade de autômatos celulares unidimensionais conservativos e reversíveis no espaço correspondente, os quais podem ser facilmente identificados através do cálculo das composições das funções locais de transição de estados com n=2. Por fim, apresentam-se relações entre as classes dos ACs conservativos, reversíveis, lineares e não-lineares, suas dinâmicas espaçotemporais e campos de bacias de atração.
12

Tribonacci Cat Map : A discrete chaotic mapping with Tribonacci matrix

Fransson, Linnea January 2021 (has links)
Based on the generating matrix to the Tribonacci sequence, the Tribonacci cat map is a discrete chaotic dynamical system, similar to Arnold's discrete cat map, but on three dimensional space. In this thesis, this new mapping is introduced and the properties of its matrix are presented. The main results of the investigation prove how the size of the domain of the map affects its period and explore the orbit lengths of non-trivial points. Different upper bounds to the map are studied and proved, and a conjecture based on numerical calculations is proposed. The Tribonacci cat map is used for applications such as 3D image encryption and colour encryption. In the latter case, the results provided by the mapping are compared to those from a generalised form of the map.
13

Direct numerical simulation and a new 3-D discrete dynamical system for image-based complex flows using volumetric lattice Boltzmann method

Xiaoyu Zhang (18423768) 26 April 2024 (has links)
<p dir="ltr">The kinetic-based lattice Boltzmann method (LBM) is a specialized computational fluid dynamics (CFD) technique that resolves intricate flow phenomena at the mesoscale level. The LBM is particularly suited for large-scale parallel computing on Graphic Processing Units (GPU) and simulating multi-phase flows. By incorporating a volume fraction parameter, LBM becomes a volumetric lattice Boltzmann method (VLBM), leading to advantages such as easy handling of complex geometries with/without movement. These capabilities render VLBM an effective tool for modeling various complex flows. In this study, we investigated the computational modeling of complex flows using VLBM, focusing particularly on pulsatile flows, the transition to turbulent flows, and pore-scale porous media flows. Furthermore, a new discrete dynamical system (DDS) is derived and validated for potential integration into large eddy simulations (LES) aimed at enhancing modeling for turbulent and pulsatile flows. Pulsatile flows are prevalent in nature, engineering, and the human body. Understanding these flows is crucial in research areas such as biomedical engineering and cardiovascular studies. However, the characteristics of oscillatory, variability in Reynolds number (Re), and shear stress bring difficulties in the numerical modeling of pulsatile flows. To analyze and understand the shear stress variability in pulsatile flows, we first developed a unique computational method using VLBM to quantify four-dimensional (4-D) wall stresses in image-based pulsatile flows. The method is validated against analytical solutions and experimental data, showing good agreement. Additionally, an application study is presented for the non-invasive quantification of 4-D hemodynamics in human carotid and vertebral arteries. Secondly, the transition to turbulent flows is studied as it plays an important role in the understanding of pulsatile flows since the flow can shift from laminar to transient and then to turbulent within a single flow cycle. We conducted direct numerical simulations (DNS) using VLBM in a three-dimensional (3-D) pipe and investigated the flow at Re ranging from 226 to 14066 in the Lagrangian description. Results demonstrate good agreement with analytical solutions for laminar flows and with open data for turbulent flows. Key observations include the disappearance of parabolic velocity profiles when Re>2300, the fluctuation of turbulent kinetic energy (TKE) between laminar and turbulent states within the range 2300</p>

Page generated in 0.0522 seconds