Spelling suggestions: "subject:"discrete fourier transforms"" "subject:"discrete courier transforms""
1 |
Theory and realization of novel algorithms for random sampling in digital signal processingLo, King Chuen January 1996 (has links)
Random sampling is a technique which overcomes the alias problem in regular sampling. The randomization, however, destroys the symmetry property of the transform kernel of the discrete Fourier transform. Hence, when transforming a randomly sampled sequence to its frequency spectrum, the Fast Fourier transform cannot be applied and the computational complexity is N(^2). The objectives of this research project are (1) To devise sampling methods for random sampling such that computation may be reduced while the anti-alias property of random sampling is maintained : Two methods of inserting limited regularities into the randomized sampling grids are proposed. They are parallel additive random sampling and hybrid additive random sampling, both of which can save at least 75% of the multiplications required. The algorithms also lend themselves to the implementation by a multiprocessor system, which will further enhance the speed of the evaluation. (2) To study the auto-correlation sequence of a randomly sampled sequence as an alternative means to confirm its anti-alias property : The anti-alias property of the two proposed methods can be confirmed by using convolution in the frequency domain. However, the same conclusion is also reached by analysing in the spatial domain the auto-correlation of such sample sequences. A technique to evaluate the auto-correlation sequence of a randomly sampled sequence with a regular step size is proposed. The technique may also serve as an algorithm to convert a randomly sampled sequence to a regularly spaced sequence having a desired Nyquist frequency. (3) To provide a rapid spectral estimation using a coarse kernel : The approximate method proposed by Mason in 1980, which trades the accuracy for the speed of the computation, is introduced for making random sampling more attractive. (4) To suggest possible applications for random and pseudo-random sampling : To fully exploit its advantages, random sampling has been adopted in measurement Random sampling is a technique which overcomes the alias problem in regular sampling. The randomization, however, destroys the symmetry property of the transform kernel of the discrete Fourier transform. Hence, when transforming a randomly sampled sequence to its frequency spectrum, the Fast Fourier transform cannot be applied and the computational complexity is N"^. The objectives of this research project are (1) To devise sampling methods for random sampling such that computation may be reduced while the anti-alias property of random sampling is maintained : Two methods of inserting limited regularities into the randomized sampling grids are proposed. They are parallel additive random sampling and hybrid additive random sampling, both of which can save at least 75% , of the multiplications required. The algorithms also lend themselves to the implementation by a multiprocessor system, which will further enhance the speed of the evaluation. (2) To study the auto-correlation sequence of a randomly sampled sequence as an alternative means to confirm its anti-alias property : The anti-alias property of the two proposed methods can be confirmed by using convolution in the frequency domain. However, the same conclusion is also reached by analysing in the spatial domain the auto-correlation of such sample sequences. A technique to evaluate the auto-correlation sequence of a randomly sampled sequence with a regular step size is proposed. The technique may also serve as an algorithm to convert a randomly sampled sequence to a regularly spaced sequence having a desired Nyquist frequency. (3) To provide a rapid spectral estimation using a coarse kernel : The approximate method proposed by Mason in 1980, which trades the accuracy for the speed of the computation, is introduced for making random sampling more attractive. (4) To suggest possible applications for random and pseudo-random sampling : To fully exploit its advantages, random sampling has been adopted in measurement instruments where computing a spectrum is either minimal or not required. Such applications in instrumentation are easily found in the literature. In this thesis, two applications in digital signal processing are introduced. (5) To suggest an inverse transformation for random sampling so as to complete a two-way process and to broaden its scope of application. Apart from the above, a case study of realizing in a transputer network the prime factor algorithm with regular sampling is given in Chapter 2 and a rough estimation of the signal-to-noise ratio for a spectrum obtained from random sampling is found in Chapter 3. Although random sampling is alias-free, problems in computational complexity and noise prevent it from being adopted widely in engineering applications. In the conclusions, the criteria for adopting random sampling are put forward and the directions for its development are discussed.
|
2 |
Quenched Asymptotics for the Discrete Fourier Transforms of a Stationary ProcessBarrera, David 27 May 2016 (has links)
No description available.
|
3 |
Crystal plasticity finite element simulations using discrete Fourier transformsAl-Harbi, Hamad F. 22 May 2014 (has links)
Crystallographic texture and its evolution are known to be major sources of anisotropy in polycrystalline metals. Highly simplified phenomenological models cannot usually provide reliable predictions of the materials anisotropy under complex deformation paths, and lack the fidelity needed to optimize the microstructure and mechanical properties during the production process. On the other hand, physics-based models such as crystal plasticity theories have demonstrated remarkable success in predicting the anisotropic mechanical response in polycrystalline metals and the evolution of underlying texture in finite plastic deformation. However, the integration of crystal plasticity models with finite element (FE) simulations tools (called CPFEM) is extremely computationally expensive, and has not been adopted broadly by the advanced materials development community. The current dissertation has mainly focused on addressing the challenges associated with integrating the recently developed spectral database approach with a commercial FE tool to permit computationally efficient simulations of heterogeneous deformations using crystal plasticity theories. More specifically, the spectral database approach to crystal plasticity solutions was successfully integrated with the implicit version of the FE package ABAQUS through a user materials subroutine, UMAT, to conduct more efficient CPFEM simulations on both fcc and bcc polycrystalline materials. It is observed that implementing the crystal plasticity spectral database in a FE code produced excellent predictions similar to the classical CPFEM, but at a significantly faster computational speed. Furthermore, an important application of the CPFEM for the extraction of crystal level plasticity parameters in multiphase materials has been demonstrated in this dissertation. More specifically, CPFEM along with a recently developed data analysis approach for spherical nanoindentation and Orientation Imaging Microscopy (OIM) have been used to extract the critical resolved shear stress of the ferrite phase in dual phase steels. This new methodology offers a novel efficient tool for the extraction of crystal level hardening parameters in any single or multiphase materials.
|
4 |
Genomic sequence processing: gene finding in eukaryotesAkhtar, Mahmood, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2008 (has links)
Of the many existing eukaryotic gene finding software programs, none are able to guarantee accurate identification of genomic protein coding regions and other biological signals central to pathway from DNA to the protein. Eukaryotic gene finding is difficult mainly due to noncontiguous and non-continuous nature of genes. Existing approaches are heavily dependent on the compositional statistics of the sequences they learn from and are not equally suitable for all types of sequences. This thesis firstly develops efficient digital signal processing-based methods for the identification of genomic protein coding regions, and then combines the optimum signal processing-based non-data-driven technique with an existing data-driven statistical method in a novel system demonstrating improved identification of acceptor splice sites. Most existing well-known DNA symbolic-to-numeric representations map the DNA information into three or four numerical sequences, potentially increasing the computational requirement of the sequence analyzer. Proposed mapping schemes, to be used for signal processing-based gene and exon prediction, incorporate DNA structural properties in the representation, in addition to reducing complexity in subsequent processing. A detailed comparison of all DNA representations, in terms of computational complexity and relative accuracy for the gene and exon prediction problem, reveals the newly proposed ?paired numeric? to be the best DNA representation. Existing signal processing-based techniques rely mostly on the period-3 behaviour of exons to obtain one dimensional gene and exon prediction features, and are not well equipped to capture the complementary properties of exonic / intronic regions and deal with the background noise in detection of exons at their nucleotide levels. These issues have been addressed in this thesis, by proposing six one-dimensional and three multi-dimensional signal processing-based gene and exon prediction features. All one-dimensional and multi-dimensional features have been evaluated using standard datasets such as Burset/Guigo1996, HMR195, and the GENSCAN test set. This is the first time that different gene and exon prediction features have been compared using substantial databases and using nucleotide-level metrics. Furthermore, the first investigation of the suitability of different window sizes for period-3 exon detection is performed. Finally, the optimum signal processing-based gene and exon prediction scheme from our evaluations is combined with a data-driven statistical technique for the recognition of acceptor splice sites. The proposed DSP-statistical hybrid is shown to achieve 43% reduction in false positives over WWAM, as used in GENSCAN.
|
5 |
Genomic sequence processing: gene finding in eukaryotesAkhtar, Mahmood, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2008 (has links)
Of the many existing eukaryotic gene finding software programs, none are able to guarantee accurate identification of genomic protein coding regions and other biological signals central to pathway from DNA to the protein. Eukaryotic gene finding is difficult mainly due to noncontiguous and non-continuous nature of genes. Existing approaches are heavily dependent on the compositional statistics of the sequences they learn from and are not equally suitable for all types of sequences. This thesis firstly develops efficient digital signal processing-based methods for the identification of genomic protein coding regions, and then combines the optimum signal processing-based non-data-driven technique with an existing data-driven statistical method in a novel system demonstrating improved identification of acceptor splice sites. Most existing well-known DNA symbolic-to-numeric representations map the DNA information into three or four numerical sequences, potentially increasing the computational requirement of the sequence analyzer. Proposed mapping schemes, to be used for signal processing-based gene and exon prediction, incorporate DNA structural properties in the representation, in addition to reducing complexity in subsequent processing. A detailed comparison of all DNA representations, in terms of computational complexity and relative accuracy for the gene and exon prediction problem, reveals the newly proposed ?paired numeric? to be the best DNA representation. Existing signal processing-based techniques rely mostly on the period-3 behaviour of exons to obtain one dimensional gene and exon prediction features, and are not well equipped to capture the complementary properties of exonic / intronic regions and deal with the background noise in detection of exons at their nucleotide levels. These issues have been addressed in this thesis, by proposing six one-dimensional and three multi-dimensional signal processing-based gene and exon prediction features. All one-dimensional and multi-dimensional features have been evaluated using standard datasets such as Burset/Guigo1996, HMR195, and the GENSCAN test set. This is the first time that different gene and exon prediction features have been compared using substantial databases and using nucleotide-level metrics. Furthermore, the first investigation of the suitability of different window sizes for period-3 exon detection is performed. Finally, the optimum signal processing-based gene and exon prediction scheme from our evaluations is combined with a data-driven statistical technique for the recognition of acceptor splice sites. The proposed DSP-statistical hybrid is shown to achieve 43% reduction in false positives over WWAM, as used in GENSCAN.
|
6 |
High Spurious-Free Dynamic Range Digital Wideband Receiver for Multiple Signal Detection and TrackingSarathy, Vivek 18 December 2007 (has links)
No description available.
|
7 |
A Novel Approach for Cancelation of Nonaligned Inter Spreading Factor Interference in LoRa SystemsZhang, Qiaohan, Bizon, Ivo, Kumar, Atul, Martinez, Ana Belen, Chafii, Marwa, Fettweis, Gerhard 22 April 2024 (has links)
Long Range (LoRa) has become a key enabler technology for low power wide area networks. However, due to its ALOHA-based medium access scheme, LoRa has to cope with collisions that limit the capacity and network scalability. Collisions between randomly overlapped signals modulated with different spreading factors (SFs) result in inter-SF interference, which increases the packet loss likelihood when signal-to-interference ratio (SIR) is low. This issue cannot be resolved by channel coding since the probability of error distance is not concentrated around the adjacent symbol. In this paper, we analytically model this interference, and propose an interference cancellation method based on the idea of segmentation of the received signal. This scheme has three steps. First, the SF of the interference signal is identified, then the equivalent data symbol and complex amplitude of the interference are estimated. Finally, the estimated interference signal is subtracted from the received signal before demodulation. Unlike conventional serial interference cancellation (SIC), this scheme can directly estimate and reconstruct the non-aligned inter-SF interference without synchronization. Simulation results show that the proposed method can significantly reduce the symbol error rate (SER) under low SIR compared with the conventional demodulation. Moreover, it also shows high robustness to fractional sample timing offset (STO) and carrier frequency offset (CFO) of interference. The presented results clearly show the effectiveness of the proposed method in terms of the SER performance.
|
Page generated in 0.0859 seconds