• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Discrete Hodge Star Operator and Poincaré Duality

Arnold, Rachel Florence 16 May 2012 (has links)
This dissertation is a uniïfication of an analysis-based approach and the traditional topological-based approach to Poincaré duality. We examine the role of the discrete Hodge star operator in proving and in realizing the Poincaré duality isomorphism (between cohomology and homology in complementary degrees) in a cellular setting without reference to a dual cell complex. More specifically, we provide a proof of this version of Poincaré duality over R via the simplicial discrete Hodge star defined by Scott Wilson in [19] without referencing a dual cell complex. We also express the Poincaré duality isomorphism over both R and Z in terms of this discrete operator. Much of this work is dedicated to extending these results to a cubical setting, via the introduction of a cubical version of Whitney forms. A cubical setting provides a place for Robin Forman's complex of nontraditional differential forms, defined in [7], in the uniïfication of analytic and topological perspectives discussed in this dissertation. In particular, we establish a ring isomorphism (on the cohomology level) between Forman's complex of differential forms with his exterior derivative and product and a complex of cubical cochains with the discrete coboundary operator and the standard cubical cup product. / Ph. D.
2

Stability of dual discretization methods for partial differential equations

Gillette, Andrew Kruse 06 July 2011 (has links)
This thesis studies the approximation of solutions to partial differential equations (PDEs) over domains discretized by the dual of a simplicial mesh. While `primal' methods associate degrees of freedom (DoFs) of the solution with specific geometrical entities of a simplicial mesh (simplex vertices, edges, faces, etc.), a `dual discretization method' associates DoFs with the geometric duals of these objects. In a tetrahedral mesh, for instance, a primal method might assign DoFs to edges of tetrahedra while a dual method for the same problem would assign DoFs to edges connecting circumcenters of adjacent tetrahedra. Dual discretization methods have been proposed for various specific PDE problems, especially in the context of electromagnetics, but have not been analyzed using the full toolkit of modern numerical analysis as is considered here. The recent and still-developing theories of finite element exterior calculus (FEEC) and discrete exterior calculus (DEC) are shown to be essential in understanding the feasibility of dual methods. These theories treat the solutions of continuous PDEs as differential forms which are then discretized as cochains (vectors of DoFs) over a mesh. While the language of DEC is ideal for describing dual methods in a straightforward fashion, the results of FEEC are required for proving convergence results. Our results about dual methods are focused on two types of stability associated with PDE solvers: discretization and numerical. Discretization stability analyzes the convergence of the approximate solution from the discrete method to the continuous solution of the PDE as the maximum size of a mesh element goes to zero. Numerical stability analyzes the potential roundoff errors accrued when computing an approximate solution. We show that dual methods can attain the same approximation power with regard to discretization stability as primal methods and may, in some circumstances, offer improved numerical stability properties. A lengthier exposition of the approach and a detailed description of our results is given in the first chapter of the thesis. / text

Page generated in 0.0681 seconds