• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 13
  • 8
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 282
  • 282
  • 168
  • 105
  • 80
  • 58
  • 54
  • 50
  • 50
  • 50
  • 38
  • 37
  • 35
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Divergent Series and Summation Methods

Markusson, Samuel January 2022 (has links)
No description available.
12

Limit shapes of standard Young tableaux and sorting networks via the Edelman-Greene correspondence

Potka, Samu January 2018 (has links)
This thesis consists of the following two articles. New properties of the Edelman–Greene bijection. Edelman and Greene constructed a correspondence between reduced words of the reverse permutation and standard Young tableaux. We prove that for any reduced word the shape of the region of the insertion tableau containing the smallest possible entries evolves exactly as the upper-left component of the permutation’s (Rothe) diagram. Properties of the Edelman–Greene bijection restricted to 132-avoiding and 2143-avoiding permutations are presented. We also consider the Edelman-Greene bijection applied to non-reduced words. On random shifted standard Young tableaux and 132-avoiding sorting networks. We study shifted standard Young tableaux (SYT). The limiting surface of uniformly random shifted SYT of staircase shape is determined, with the integers in the SYT as heights. This implies via properties of the Edelman–Greene bijection results about random 132-avoiding sorting networks, including limit shapes for trajectories and intermediate permutations. Moreover, the expected number of adjacencies in SYT is considered. It is shown that on average each row and each column of a shifted SYT of staircase shape contains precisely one adjacency. / <p>QC 20180926</p>
13

BOUNDING THE NUMBER OF COMPATIBLE SIMPLICES IN HIGHER DIMENSIONAL TOURNAMENTS

Chandrasekhar, Karthik 01 January 2019 (has links)
A tournament graph G is a vertex set V of size n, together with a directed edge set E ⊂ V × V such that (i, j) ∈ E if and only if (j, i) ∉ E for all distinct i, j ∈ V and (i, i) ∉ E for all i ∈ V. We explore the following generalization: For a fixed k we orient every k-subset of V by assigning it an orientation. That is, every facet of the (k − 1)-skeleton of the (n − 1)-dimensional simplex on V is given an orientation. In this dissertation we bound the number of compatible k-simplices, that is we bound the number of k-simplices such that its (k − 1)-faces with the already-specified orientation form an oriented boundary. We prove lower and upper bounds for all k ≥ 3. For k = 3 these bounds agree when the number of vertices n is q or q + 1 where q is a prime power congruent to 3 modulo 4. We also prove some lower bounds for values k > 3 and analyze the asymptotic behavior.
14

Multicolor Ramsey and List Ramsey Numbers for Double Stars

Ruotolo, Jake 01 January 2022 (has links)
The core idea of Ramsey theory is that complete disorder is impossible. Given a large structure, no matter how complex it is, we can always find a smaller substructure that has some sort of order. For a graph H, the k-color Ramsey number r(H; k) of H is the smallest integer n such that every k-edge-coloring of Kn contains a monochromatic copy of H. Despite active research for decades, very little is known about Ramsey numbers of graphs. This is especially true for r(H; k) when k is at least 3, also known as the multicolor Ramsey number of H. Let Sn denote the star on n+1 vertices, the graph with one vertex of degree n (the center of Sn) and n vertices of degree 1. The double star S(n,m) is the graph consisting of the disjoint union of Sn and Sm together with an edge joining their centers. In this thesis, we study the multicolor Ramsey number of double stars. We obtain upper and lower bounds for r(S(n,m); k) when k is at least 3 and prove that r(S(n,m); k) = nk + m + 2 for k odd and n sufficiently large. We also investigate a new variant of the Ramsey number known as the list Ramsey number. Let L be an assignment of k-element subsets of the positive integers to the edges of Kn. A k-edge-coloring c of Kn is an L-coloring if c(e) belongs to L(e) for each edge e of Kn. The list Ramsey number rl(H; k) of H is the smallest integer n such that there is some L for which every L-coloring of Kn contains a monochromatic copy of H. In this thesis, we study rl(S(1,1); p) and rl(Sn; p), where p is an odd prime number.
15

Chip Firing Games and Riemann-Roch Properties for Directed Graphs

Gaslowitz, Joshua Z 01 May 2013 (has links)
The following presents a brief introduction to tropical geometry, especially tropical curves, and explains a connection to graph theory. We also give a brief summary of the Riemann-Roch property for graphs, established by Baker and Norine (2007), as well as the tools used in their proof. Various generalizations are described, including a more thorough description of the extension to strongly connected directed graphs by Asadi and Backman (2011). Building from their constructions, an algorithm to determine if a directed graph has Row Riemann-Roch Property is given and thoroughly explained.
16

The Topswop Forest

Desheng, Zhang January 2021 (has links)
In this thesis, we will define the topswop forest and study the properties of the forest. We will show the number of trees and leaves in the forest. We will also do an experiment to show there is more than an exponential growth between the number of nodes of each tree and the number of elements in the permutation. The experiment also shows that the tallest tree doesn’t always contain the identity permutation. In the later section, we derive a linear lower bound for the topswop problem by studying a specific family of permutation.
17

A Learning Model for Discrete Mathematics

Wallace, Christopher 01 December 2008 (has links)
In this paper we introduce a new model which we apply to Discrete Mathematics, but could be applied to other courses as well. The model uses homework, lectures and quizzes. The key factor and design is centered on the quizzes which are given daily. We also discuss how lectures and homework question sessions can be shortened slightly to allow for twenty-five minute quizzes without sacrificing content. The model assumes a course which meets two days a week lecture, each of which is ninety minutes with no recitations. A three hour lecture could also be applied to this model.
18

COMBINATORIAL OPTIMIZATION APPROACHES TO DISCRETE PROBLEMS

LIU, MIN JING 10 1900 (has links)
<p>As stressed by the Society for Industrial and Applied Mathematics (SIAM): Applied mathematics, in partnership with computational science, is essential in solving many real-world problems. Combinatorial optimization focuses on problems arising from discrete structures such as graphs and polyhedra. This thesis deals with extremal graphs and strings and focuses on two problems: the Erdos' problem on multiplicities of complete subgraphs and the maximum number of distinct squares in a string.<br />The first part of the thesis deals with strengthening the bounds for the minimum proportion of monochromatic t cliques and t cocliques for all 2-colourings of the edges of the complete graph on n vertices. Denote by k_t(G) the number of cliques of order t in a graph G. Let k_t(n) = min{k_t(G)+k_t(\overline{G})} where \overline{G} denotes the complement of G of order n. Let c_t(n) = {k_t(n)} / {\tbinom{n}{t}} and c_t be the limit of c_t(n) for n going to infinity. A 1962 conjecture of Erdos stating that c_t = 2^{1-\tbinom{t}{2}} was disproved by Thomason in 1989 for all t > 3. Tighter counterexamples have been constructed by Jagger, Stovicek and Thomason in 1996, by Thomason for t < 7 in 1997, and by Franek for t=6 in 2002. We present a computational framework to investigate tighter upper bounds for small t yielding the following improved upper bounds for t=6,7 and 8: c_6 \leq 0.7445 \times 2^{1- \tbinom{6}{2}}, c_7\leq 0.6869\times 2^{1- \tbinom{7}{2}}, and c_8 \leq 0.7002\times 2^{1- \tbinom{8}{2}}. The constructions are based on a large but highly regular variant of Cayley graphs for which the number of cliques and cocliques can be expressed in closed form. Considering the quantity e_t=2^{\tbinom{t}{2}-1} c_t, the new upper bound of 0.687 for e_7 is the first bound for any e_t smaller than the lower bound of 0.695 for e_4 due to Giraud in 1979.<br />The second part of the thesis deals with extremal periodicities in strings: we consider the problem of the maximum number of distinct squares in a string. The importance of considering as key variables both the length n and the size d of the alphabet is stressed. Let (d,n)-string denote a string of length n with exactly d distinct symbols. We investigate the function \sigma_d(n) = max {s(x) | x} where s(x) denotes the number of distinct primitively rooted squares in a (d,n)-string x. We discuss a computational framework for computing \sigma_d(n) based on the notion of density and exploiting the tightness of the available lower bound. The obtained computational results substantiate the hypothesized upper bound of n-d for \sigma_d(n). The structural similarities with the approach used for investigating the Hirsch bound for the diameter of a polytope of dimension d having n facets is underlined. For example, the role played by (d,2d)-polytope was presented in 1967 by Klee and Walkup who showed the equivalency between the Hirsch conjecture and the d-step conjecture.</p> / Doctor of Philosophy (PhD)
19

On t-Restricted Optimal Rubbling of Graphs

Murphy, Kyle 01 May 2017 (has links)
For a graph G = (V;E), a pebble distribution is defined as a mapping of the vertex set in to the integers, where each vertex begins with f(v) pebbles. A pebbling move takes two pebbles from some vertex adjacent to v and places one pebble on v. A rubbling move takes one pebble from each of two vertices that are adjacent to v and places one pebble on v. A vertex x is reachable under a pebbling distribution f if there exists some sequence of rubbling and pebbling moves that places a pebble on x. A pebbling distribution where every vertex is reachable is called a rubbling configuration. The t-restricted optimal rubbling number of G is the minimum number of pebbles required for a rubbling configuration where no vertex is initially assigned more than t pebbles. Here we present results on the 1-restricted optimal rubbling number and the 2- restricted optimal rubbling number.
20

Vertex-Relaxed Graceful Labelings of Graphs and Congruences

Aftene, Florin 01 April 2018 (has links)
A labeling of a graph is an assignment of a natural number to each vertex of a graph. Graceful labelings are very important types of labelings. The study of graceful labelings is very difficult and little has been shown about such labelings. Vertex-relaxed graceful labelings of graphs are a class of labelings that include graceful labelings, and their study gives an approach to the study of graceful labelings. In this thesis we generalize the congruence approach of Rosa to obtain new criteria for vertex-relaxed graceful labelings of graphs. To do this, we generalize Faulhaber’s Formula, which is a famous result about sums of powers of integers.

Page generated in 0.083 seconds