• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Directional analysis of cardiac left ventricular motion from PET images. / Análise direcional do movimento do ventrículo esquerdo cardíaco a partir de imagens de PET.

Sims, John Andrew 28 June 2017 (has links)
Quantification of cardiac left ventricular (LV) motion from medical images provides a non-invasive method for diagnosing cardiovascular disease (CVD). The proposed study continues our group\'s line of research in quantification of LV motion by applying optical flow (OF) techniques to quantify LV motion in gated Rubidium Chloride-82Rb (82Rb) and Fluorodeoxyglucose-18F (FDG) PET image sequences. The following challenges arise from this work: (i) the motion vector field (MVF) should be made as accurate as possible to maximise sensitivity and specificity; (ii) the MVF is large and composed of 3D vectors in 3D space, making visual extraction of information for medical diagnosis dffcult by human observers. Approaches to improve the accuracy of motion quantification were developed. While the volume of interest is the region of the MVF corresponding to the LV myocardium, non-zero values of motion exist outside this volume due to artefacts in the motion detection method or from neighbouring structures, such as the right ventricle. Improvements in accuracy can be obtained by segmenting the LV and setting the MVF to zero outside the LV. The LV myocardium was automatically segmented in short-axis slices using the Hough circle transform to provide an initialisation to the distance regularised level set evolution algorithm. Our segmentation method attained Dice similarity measure of 93.43% when tested over 395 FDG slices, compared with manual segmentation. Strategies for improving OF performance at motion boundaries were investigated using spatially varying averaging filters, applied to synthetic image sequences. Results showed improvements in motion quantification accuracy using these methods. Kinetic Energy Index (KEf), an indicator of cardiac motility, was used to assess 63 individuals with normal and altered/low cardiac function from a 82Rb PET image database. Sensitivity and specificity tests were performed to evaluate the potential of KEf as a classifier of cardiac function, using LV ejection fraction as gold standard. A receiver operating characteristics curve was constructed, which provided an area under the curve of 0.906. Analysis of LV motion can be simplified by visualisation of directional motion field components, namely radial, rotational (or circumferential) and linear, obtained through automated decomposition. The Discrete Helmholtz Hodge Decomposition (DHHD) was used to generate these components in an automated manner, with a validation performed using synthetic cardiac motion fields from the Extended Cardiac Torso phantom. Finally, the DHHD was applied to OF fields from gated FDG images, allowing an analysis of directional components from an individual with normal cardiac function and a patient with low function and a pacemaker fitted. Motion field quantification from PET images allows the development of new indicators to diagnose CVDs. The ability of these motility indicators depends on the accuracy of the quantification of movement, which in turn can be determined by characteristics of the input images, such as noise. Motion analysis provides a promising and unprecedented approach to the diagnosis of CVDs. / A quantificação do movimento cardíaco do ventrículo esquerdo (VE) a partir de imagens médicas fornece um método não invasivo para o diagnóstico de doenças cardiovasculares (DCV). O estudo aqui proposto continua na mesma linha de pesquisa do nosso grupo sobre quantificação do movimento do VE por meio de técnicas de fluxo óptico (FO), aplicando estes métodos para quantificar o movimento do VE em sequências de imagens associadas às substâncias de cloreto de rubídio-82Rb (82Rb) e fluorodeoxiglucose-18F (FDG) PET. Com a extração dos campos vetoriais surgiram os seguintes desafios: (i) o campo vetorial de movimento (motion vector field, MVF) deve ser feito da forma mais precisa possível para maximizar a sensibilidade e especificidade; (ii) o MVF é extenso e composto de vetores 3D no espaço 3D, dificultando a análise visual de informações por observadores humanos para o diagnóstico médico. Foram desenvolvidas abordagens para melhorar a precisão da quantificação de movimento, considerando que o volume de interesse seja a região do MVF correspondente ao miocárdio do VE, em que valores de movimento não nulos existem fora deste volume devido aos artefatos do método de detecção de movimento ou de estruturas vizinhas, como o ventrículo direito. As melhorias na precisão foram obtidas segmentando o VE e ajustando os valores de MVF para zero fora do VE. O miocárdio VE foi segmentado automaticamente em fatias de eixo curto usando a Transformada de Hough na detecção de círculos para fornecer uma inicialização ao algoritmo de curvas de nível, um tipo de modelo deformável. A segmentação automática do VE atingiu 93,43% de medida de similaridade Dice, quando foi testado em 395 fatias de eixo menor de FDG, comparado com a segmentação manual. Estratégias para melhorar o desempenho do algoritmo OF nas bordas de movimento foram investigadas usando spatially varying averaging filters, aplicados em seqüências de imagens sintéticas. Os resultados mostraram melhorias na precisão de quantificação de movimento utilizando estes métodos. O Índice de Energia Cinética (KEf), um indicador de motilidade cardíaca, foi utilizado para avaliar 63 sujeitos com função cardíaca normal e alterada / baixa de uma base de dados de imagens PET de 82Rb. Foram realizados testes de sensibilidade e especificidade para avaliar o potencial de KEf para classificar a função cardíaca, utilizando a fração de ejeção do VE como padrão ouro. Foi construída uma curva ROC, que proporcionou uma área sob a curva de 0,906. A análise do movimento do VE pode ser simplificada pela visualização de componentes de campo de movimento direcional, ou seja, radial, rotacional (ou circunferencial) e linear, obtidos por decomposição automatizada. A decomposição discreta de Helmholtz Hodge (DHHD) foi utilizada para gerar estes componentes de forma automatizada, com uma validação utilizando campos de movimento cardíaco sintéticos a partir do conjunto Extended Cardiac Torso Phantom. Finalmente, o método DHHD foi aplicado a campos de FO, criado a partir de imagens FDG, permitindo uma análise de componentes direcionais de um indivíduo com função cardíaca normal e um paciente com baixa função e utilizando um marca-passo. A quantificação do campo de movimento a partir de imagens PET possibilita o desenvolvimento de novos indicadores para diagnosticar DCVs. A capacidade destes indicadores de motilidade depende na precisão da quantificação de movimento que, por sua vez, pode ser determinado por características das imagens de entrada como ruído. A análise de movimento fornece um promissor e sem precedente método para o diagnóstico de DCVs.
2

Directional analysis of cardiac left ventricular motion from PET images. / Análise direcional do movimento do ventrículo esquerdo cardíaco a partir de imagens de PET.

John Andrew Sims 28 June 2017 (has links)
Quantification of cardiac left ventricular (LV) motion from medical images provides a non-invasive method for diagnosing cardiovascular disease (CVD). The proposed study continues our group\'s line of research in quantification of LV motion by applying optical flow (OF) techniques to quantify LV motion in gated Rubidium Chloride-82Rb (82Rb) and Fluorodeoxyglucose-18F (FDG) PET image sequences. The following challenges arise from this work: (i) the motion vector field (MVF) should be made as accurate as possible to maximise sensitivity and specificity; (ii) the MVF is large and composed of 3D vectors in 3D space, making visual extraction of information for medical diagnosis dffcult by human observers. Approaches to improve the accuracy of motion quantification were developed. While the volume of interest is the region of the MVF corresponding to the LV myocardium, non-zero values of motion exist outside this volume due to artefacts in the motion detection method or from neighbouring structures, such as the right ventricle. Improvements in accuracy can be obtained by segmenting the LV and setting the MVF to zero outside the LV. The LV myocardium was automatically segmented in short-axis slices using the Hough circle transform to provide an initialisation to the distance regularised level set evolution algorithm. Our segmentation method attained Dice similarity measure of 93.43% when tested over 395 FDG slices, compared with manual segmentation. Strategies for improving OF performance at motion boundaries were investigated using spatially varying averaging filters, applied to synthetic image sequences. Results showed improvements in motion quantification accuracy using these methods. Kinetic Energy Index (KEf), an indicator of cardiac motility, was used to assess 63 individuals with normal and altered/low cardiac function from a 82Rb PET image database. Sensitivity and specificity tests were performed to evaluate the potential of KEf as a classifier of cardiac function, using LV ejection fraction as gold standard. A receiver operating characteristics curve was constructed, which provided an area under the curve of 0.906. Analysis of LV motion can be simplified by visualisation of directional motion field components, namely radial, rotational (or circumferential) and linear, obtained through automated decomposition. The Discrete Helmholtz Hodge Decomposition (DHHD) was used to generate these components in an automated manner, with a validation performed using synthetic cardiac motion fields from the Extended Cardiac Torso phantom. Finally, the DHHD was applied to OF fields from gated FDG images, allowing an analysis of directional components from an individual with normal cardiac function and a patient with low function and a pacemaker fitted. Motion field quantification from PET images allows the development of new indicators to diagnose CVDs. The ability of these motility indicators depends on the accuracy of the quantification of movement, which in turn can be determined by characteristics of the input images, such as noise. Motion analysis provides a promising and unprecedented approach to the diagnosis of CVDs. / A quantificação do movimento cardíaco do ventrículo esquerdo (VE) a partir de imagens médicas fornece um método não invasivo para o diagnóstico de doenças cardiovasculares (DCV). O estudo aqui proposto continua na mesma linha de pesquisa do nosso grupo sobre quantificação do movimento do VE por meio de técnicas de fluxo óptico (FO), aplicando estes métodos para quantificar o movimento do VE em sequências de imagens associadas às substâncias de cloreto de rubídio-82Rb (82Rb) e fluorodeoxiglucose-18F (FDG) PET. Com a extração dos campos vetoriais surgiram os seguintes desafios: (i) o campo vetorial de movimento (motion vector field, MVF) deve ser feito da forma mais precisa possível para maximizar a sensibilidade e especificidade; (ii) o MVF é extenso e composto de vetores 3D no espaço 3D, dificultando a análise visual de informações por observadores humanos para o diagnóstico médico. Foram desenvolvidas abordagens para melhorar a precisão da quantificação de movimento, considerando que o volume de interesse seja a região do MVF correspondente ao miocárdio do VE, em que valores de movimento não nulos existem fora deste volume devido aos artefatos do método de detecção de movimento ou de estruturas vizinhas, como o ventrículo direito. As melhorias na precisão foram obtidas segmentando o VE e ajustando os valores de MVF para zero fora do VE. O miocárdio VE foi segmentado automaticamente em fatias de eixo curto usando a Transformada de Hough na detecção de círculos para fornecer uma inicialização ao algoritmo de curvas de nível, um tipo de modelo deformável. A segmentação automática do VE atingiu 93,43% de medida de similaridade Dice, quando foi testado em 395 fatias de eixo menor de FDG, comparado com a segmentação manual. Estratégias para melhorar o desempenho do algoritmo OF nas bordas de movimento foram investigadas usando spatially varying averaging filters, aplicados em seqüências de imagens sintéticas. Os resultados mostraram melhorias na precisão de quantificação de movimento utilizando estes métodos. O Índice de Energia Cinética (KEf), um indicador de motilidade cardíaca, foi utilizado para avaliar 63 sujeitos com função cardíaca normal e alterada / baixa de uma base de dados de imagens PET de 82Rb. Foram realizados testes de sensibilidade e especificidade para avaliar o potencial de KEf para classificar a função cardíaca, utilizando a fração de ejeção do VE como padrão ouro. Foi construída uma curva ROC, que proporcionou uma área sob a curva de 0,906. A análise do movimento do VE pode ser simplificada pela visualização de componentes de campo de movimento direcional, ou seja, radial, rotacional (ou circunferencial) e linear, obtidos por decomposição automatizada. A decomposição discreta de Helmholtz Hodge (DHHD) foi utilizada para gerar estes componentes de forma automatizada, com uma validação utilizando campos de movimento cardíaco sintéticos a partir do conjunto Extended Cardiac Torso Phantom. Finalmente, o método DHHD foi aplicado a campos de FO, criado a partir de imagens FDG, permitindo uma análise de componentes direcionais de um indivíduo com função cardíaca normal e um paciente com baixa função e utilizando um marca-passo. A quantificação do campo de movimento a partir de imagens PET possibilita o desenvolvimento de novos indicadores para diagnosticar DCVs. A capacidade destes indicadores de motilidade depende na precisão da quantificação de movimento que, por sua vez, pode ser determinado por características das imagens de entrada como ruído. A análise de movimento fornece um promissor e sem precedente método para o diagnóstico de DCVs.
3

Décomposition de Hodge-Helmholtz discrète / Discrete Helmholtz-Hodge Decomposition

Lemoine, Antoine 27 November 2014 (has links)
Nous proposons dans ce mémoire de thèse une méthodologie permettant la résolution du problème de la décomposition de Hodge-Helmholtz discrète sur maillages polyédriques. Le défi de ce travail consiste à respecter les propriétés de la décomposition au niveau discret. Pour répondre à cet objectif, nous menons une étude bibliographique nous permettant d'identifier la nécessité de la mise en oeuvre de schémas numériques mimétiques. La description ainsi que la validation de la mise en oeuvre de ces schémas sont présentées dans ce mémoire. Nous revisitons et améliorons les méthodes de décomposition que nous étudions ensuite au travers d'expériences numériques. En particulier, nous détaillons le choix d'un solveur linéaire ainsi que la convergence des quantités extraites sur un ensemble varié de maillages polyédriques et de conditions aux limites. Nous appliquons finalement la décomposition de Hodge-Helmholtz à l'étude de deux écoulements turbulents : un écoulement en canal plan et un écoulement turbulent homogène isotrope. / We propose in this thesis a methodology to compute the Helmholtz-Hodge decomposition on discrete polyhedral meshes. The challenge of this work isto preserve the properties of the decomposition at the discrete level. In our literature survey, we have identified the need of mimetic schemes to achieve our goal. The description and validation of our implementation of these schemes are presented inthis document. We revisit and improve the methods of decomposition we then study through numerical experiments. In particular, we detail our choice of linear solvers and the convergence of extracted quantities on various series of polyhedral meshes and boundary conditions. Finally, we apply the Helmholtz-Hodge decomposition to the study of two turbulent flows: a turbulent channel flow and a homogeneous isotropic turbulent flow.

Page generated in 0.1066 seconds