Spelling suggestions: "subject:"discrete subgroups"" "subject:"iscrete subgroups""
1 |
Arithméticité de sous-groupes discrets contenant un réseau horosphérique / Arithmeticity of discrete subgroup containing a horospherical latticeMiquel, Sebastien 22 December 2017 (has links)
Soit G un groupe algébrique réel simple de rang réel au moins 2 et P un sous-groupe parabolique de G. On montre que tout sous-groupe discret de G intersectant le radical unipotent de P en un réseau est un réseau aritmétique de G, sauf éventuellement lorsque G = SO(2,4n+2) et P est le stabilisateur d'un 2-plan isotrope. Ceci répond partiellement à une conjecture de Margulis, déjà étudiée par Hee Oh. On étudie aussi le cas où G est le produit de plusieurs groupes de rang 1, généralisant des résultats de Selberg, Benoist et Oh. / Let G be a real algebraic group of real rank at least 2 and P a parabolic subgroup of G. We prove that any discrete subgroup of G that intersects the unipotent radical of P in a lattice is an arithmetic lattice of G, except maybe when G=SO(2,4n+2) and P is the stabilizer of an isotropic 2-plane. This provide a partial answer to a conjecture of Margulis that was already studied by Hee Oh. We also study the case where G is a product of several rank 1 groups, generalising results of Selberg, Benoist and Oh.
|
2 |
Frieze and Tiling Groups in the Lorentz-Minkowski PlaneLynch, Michael O 01 January 2024 (has links) (PDF)
In this thesis, there is a presentation of the isometries from the Lorentz-Minkowski Plane and a solution to the Frieze Patterns. There is a suggestion for a solution for the Tiling Patterns. Since the construction of these mathematical structures is well understood in the Euclidean plane, one can follow a similar approach to the construction of such objects to find the unique number of groups that describe all possible frieze patterns while there is a suggestion of the number for the tiling case. There is a reflection of these results in a computational and cosmological context.
|
Page generated in 0.0499 seconds