• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Arithméticité de sous-groupes discrets contenant un réseau horosphérique / Arithmeticity of discrete subgroup containing a horospherical lattice

Miquel, Sebastien 22 December 2017 (has links)
Soit G un groupe algébrique réel simple de rang réel au moins 2 et P un sous-groupe parabolique de G. On montre que tout sous-groupe discret de G intersectant le radical unipotent de P en un réseau est un réseau aritmétique de G, sauf éventuellement lorsque G = SO(2,4n+2) et P est le stabilisateur d'un 2-plan isotrope. Ceci répond partiellement à une conjecture de Margulis, déjà étudiée par Hee Oh. On étudie aussi le cas où G est le produit de plusieurs groupes de rang 1, généralisant des résultats de Selberg, Benoist et Oh. / Let G be a real algebraic group of real rank at least 2 and P a parabolic subgroup of G. We prove that any discrete subgroup of G that intersects the unipotent radical of P in a lattice is an arithmetic lattice of G, except maybe when G=SO(2,4n+2) and P is the stabilizer of an isotropic 2-plane. This provide a partial answer to a conjecture of Margulis that was already studied by Hee Oh. We also study the case where G is a product of several rank 1 groups, generalising results of Selberg, Benoist and Oh.
2

Frieze and Tiling Groups in the Lorentz-Minkowski Plane

Lynch, Michael O 01 January 2024 (has links) (PDF)
In this thesis, there is a presentation of the isometries from the Lorentz-Minkowski Plane and a solution to the Frieze Patterns. There is a suggestion for a solution for the Tiling Patterns. Since the construction of these mathematical structures is well understood in the Euclidean plane, one can follow a similar approach to the construction of such objects to find the unique number of groups that describe all possible frieze patterns while there is a suggestion of the number for the tiling case. There is a reflection of these results in a computational and cosmological context.

Page generated in 0.0499 seconds