Spelling suggestions: "subject:"absolutecoordinates transport equation"" "subject:"superordinates transport equation""
1 |
The Advancement of Stable, Efficient and Parallel Acceleration Methods for the Neutron Transport Equation / Vers des méthodes d’accélération stables et efficaces en contextes parallèlesFord, Wesley 08 November 2019 (has links)
Dans cet article, nous proposons une nouvelle bibliothèque de techniques non linéaires pour accélérer l’équation de transport en ordonnées discrètes. Deux nouveaux types de méthodes d'accélération non linéaire appelées méthode de rééquilibrage spatialement variable (SVRM) et accélération de matrice de réponse (RMA), respectivement, sont proposées et étudiées. La première méthode, SVRM, est basée sur le calcul de la variation spatiale de premier ordre de l'équation de la balance des neutrons. RMA, est une méthode DP0 qui utilise la connaissance de l'opérateur de transport pour former une relation cohérente. Deux variantes distinctes de RMA, appelées respectivement Explicit-RMA (E-RMA) et Balance (B-RMA), sont dérivées. Les propriétés de convergence des deux méthodes d'accélération sont étudiées pour deux schémas d'itération différents de l'opérateur de transport de la méthode des caractéristiques (MOC) pour une dalle 1D, en utilisant une analyse spectrale et une analyse de Fourier. Sur la base des résultats de la comparaison 1D, seuls les outils RMA et CMFD ont été implémentés dans la bibliothèque. Les performances de RMA sont comparées à celles de CMFD en utilisant les tests 3D C5G7, ZPPR et UH12. Les schémas de résolution parallèles et séquentiels sont considérés. L'analyse des résultats indique que les deux variantes de RMA ont une efficacité et une stabilité améliorées par rapport au CMFD, pour les matériaux à diffusion optique. De plus, le RMA montre une amélioration importante de la stabilité et de l'efficacité lorsque la géométrie est décomposée spatialement. Pour obtenir des performances numériques optimales, une combinaison de RMA et de CMFD est suggérée. Une enquête plus approfondie sur l'utilisation et l'amélioration de la RMA est proposée. De plus, de nombreuses idées pour étendre les fonctionnalités de la bibliothèque sont présentées. / In this paper we propose a new library of non-linear techniques for accelerating the discrete-ordinates transport equation. Two new types of nonlinear acceleration methods called Spatially Variant Rebalancing Method (SVRM) and Response Matrix Acceleration (RMA), respectively, are proposed and investigated. The first method, SVRM, is based on the computation of the zeroth and first order spatial variation of the neutron balance equation. RMA, is a DP0 method that uses knowledge of the transport operator to form a consistent relationship. Two distinct variants of RMA, called Explicit-RMA (E-RMA) and Balance (B-RMA), respectively, are derived. The convergence properties of both acceleration methods are investigated for two different iteration schemes of the method of characteristics (MOC) transport operator for a 1D slab, using spectral and Fourier analysis. Based off the results of the 1D comparison, only RMA and CMFD were implemented in the library. The performance of RMA is compared to CMFD using the C5G7, ZPPR, and UH12 3D benchmarks. Both parallel and sequential solving schemes are considered. Analysis of the results indicates that both variants of RMA have improved effectiveness and stability relative to CMFD, for optically diffusive materials. Moreover, RMA shows great improvement in stability and effectiveness when the geometry is spatially decomposed. To achieve optimal numerical performance, a combination of RMA and CMFD is suggested. Further investigation into the use and improvement of RMA is proposed. As well, many ideas for extending the features of the library are presented.
|
Page generated in 0.1153 seconds