• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE PHYSICAL BEHAVIOR AND CHARACTERIZATION OF NANOPOROUS SILICON AND DISPENSER CATHODE SURFACES

Maxwell, Tyler Lucius Corey 01 January 2018 (has links)
Nanostructured materials have received a surge of interest in recent years since it has become apparent that reducing the size of a material often leads to heightened mechanical behavior. From a fundamental standpoint, this stems from the confinement of dislocations. Applications in microelectromechanical devices, lithium ion batteries, gas sensing and catalysis are realized by combining the improvements in mechanical behavior from material size reduction with the heightened chemical activity offered by materials with a high surface-area-to-volume ratio. In this study, films of nanoporous Si-Mg were produced through magnetron sputtering, followed by dealloying using an environmentally benign process with distilled water. The film composition and structure was characterized both at the surface and throughout the film thickness, while the mechanical behavior was explored with nanoindentation. Dispenser cathodes operate via thermionic emission and are an important area of interest in vacuum electron devices. While scientists have known for many years what elemental constituents are used to manufacture dispenser cathodes of excellent emission behavior, a fundamental understanding has yet to be realized. In this study, components of a scandate cathode that exhibited excellent emission behavior were characterized and used to inform the study of model thin films. Isolating relevant components of the scandate cathode for careful study could help inform future breakthroughs in understanding the working mechanism(s) of the scandate cathode. The structure, composition and electronic behavior of model W-Al alloy films were characterized experimentally and compared to computation. Moreover, a unique vacuum chamber was designed to activate modern thermionic dispenser cathodes, observe residual gas species present, and measure the work function through various state-of-the-art techniques.
2

MICROSTRUCTURE AND WORK FUNCTION OF DISPENSER CATHODE COATINGS: EFFECTS ON THERMIONIC EMISSION

Swartzentruber, Phillip D 01 January 2014 (has links)
Dispenser cathodes emit electrons through thermionic emission and are a critical component of space-based and telecommunication devices. The emission of electrons is enhanced when coated with a refractory metal such as osmium (Os), osmium-ruthenium (Os-Ru), or iridium (Ir). In this work the microstructure, thermionic emission, and work function of thin film Os-Ru coatings were studied in order to relate microstructural properties and thermionic emission. Os-Ru thin film coatings were prepared through magnetron sputtering and substrate biasing to produce films with an array of preferred orientations, or texture. The effect of texture on thermionic emission was studied in detail through closely-spaced diode testing, SEM imaging, and x-ray diffraction. Results indicated that there was a strong correlation with emission behavior and specific preferred orientations. An ultra-high vacuum compatible Kelvin Probe was used to measure the work function of W-Os-Ru ternary alloy films to determine the effect W interdiffusion has on work function. The results indicated that a high work function alloy coating corresponded to low work function cathodes, as expected. It was inferred that a high work function alloy coating results in a low work function cathode because it aligns more closely with ionization energy of Ba. The results also proved that this method of evaluating dispenser cathode coatings can distinguish small variations in microstructure and composition and may be a beneficial tool in the development of improved dispenser cathode coatings. A novel experimental apparatus was constructed to measure the work function of dispenser cathode coatings in-vacuo using the ultra-high vacuum Kelvin Probe. The apparatus is capable of activating cathodes at high temperature and measuring the work function at elevated temperature. The design of this apparatus allows for more rapid evaluation of dispenser cathode coatings.
3

Thermionic Electron Emission Microscopy Studies of Barium and Scandium Oxides on Tungsten

Vaughn, Joel M. 23 September 2010 (has links)
No description available.

Page generated in 0.2716 seconds