• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Understanding Ferroelastic Domain Reorientation as a Damping Mechanism in Ferroelectric Reinforced Metal Matrix Composites

Poquette, Ben David 09 October 2007 (has links)
Ferroelectric-reinforced metal matrix composites (FR-MMCs) offer the potential to improve damping characteristics of structural materials. Many structural materials are valued based on their stiffness and strength; however, stiff materials typically have limited inherent ability to dampen mechanical or acoustic vibrations. The addition of ferroelectric ceramic particles may also augment the strength of the matrix, creating a multifunctional composite. The damping behavior of two FR-MMC systems has been examined. One involved the incorporation of barium titanate (BaTiO3) particles into a Cu- 10w%Sn (bearing bronze) matrix and the other incorporating them into an electroformed Ni matrix. Here the damping properties of the resulting ferroelectric reinforced metal matrix composites (FR-MMCs) have been investigated versus frequency, temperature (above and below the Curie temperature of the reinforcement), and number of strain cycles. FR-MMCs currently represent a material system capable of exhibiting increased damping ability, as compared to the structural metal matrix alone. Dynamic mechanical analysis and neutron diffraction have shown that much of this added damping ability can be attributed to the ferroelectric/ferroelastic nature of the reinforcement. / Ph. D.
12

Vysoce entropické slitiny Cantorova typu zpevněné disperzí nitridů / Nitride dispersion strengthened Cantor´s high entropy alloys

Havlíček, Štěpán-Adam January 2020 (has links)
High Entropy Alloy (HEA) is a class of construction steels based on the mixing of five or more elements in approximately equimolar ratios. Despite the ambiguity of their future use, HEAs represent a significantly new group of construction materials that are currently receiving a great deal of attention. Single-phase HEAs fail when used at elevated tempera-tures. The improvement of their high-temperature resistance was achieved by introducing a dispersion of oxides Al2O3 and Y2O3. To generalize the positive effect of dispersions on the mechanical properties at elevated temperatures, particles of a similar nature were cho-sen. These were dispersed particles of nitrides: hardness-incompatible AlN and hardness-compatible BN. The particles were evenly distributed inside the alloys by mechanical al-loying and compacted by SPS (Spark Plasma Sintering). The new structural alloy reached a density higher than 96.5 % and brought an increase in yield strength at room tempera-ture of up to 67 % and 40 % at elevated temperatures, while maintaining a homogeneous distribution of input powders.

Page generated in 0.5061 seconds