• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoelectron Spectroscopy on HCl and DCl : Synchrotron Radiation Based Studies of Dissociation Dynamics

Burmeister, Florian January 2003 (has links)
<p>Dissociation dynamics of the ionized molecules HCl and the deuterated system DCl has been studied in gas-phase using synchrotron based photoelectron spectroscopy (PES).</p><p>The inner-valence "(4σ)<sup>-1</sup>" photoionization band for DCl and HCl was recorded using maximum resolution in order to probe an interference pattern between a dissociative and a bound electronic state. For HCl<sup>+</sup>, we clearly observed distorted Fano-type peaks even for modest resolution, whereas for DCl<sup>+</sup>, the pattern was hardly discernible. The observation in HCl<sup>+</sup> has been explained by a coupling between two adiabatic electronic states, where the bound state was populated through non-adiabatic curve-crossing. The nuclear motion of HCl<sup>+</sup> is too fast for the Born-Oppenheimer approximation to be fully valid in this case. Whereas for DCl<sup>+</sup>, with larger reduced mass and therefore slower nuclear motion, the non-adiabatic coupling is less pronounced, and the vibrational progression vanishes.</p><p>A comparative study between PES and threshold photoelectron spectra (TPES) of the inner-valence bands of HCl and DCl has been performed, showing differences in intensities and shapes of the vibrational bands. These differences were attributed to the fact that the sudden approximation, which can be assumed to be valid for PES, is violated in the case of TPES.</p><p>A resonant Auger electron spectroscopy study of HCl and DCl has been performed, which shows an interference pattern between atomic and molecular Auger- and photoelectron channels. The atomic features are associated with ultra-fast dissociation of the molecules, on the same time scale as the Auger decay. The observation shows that the excited molecular system has to be regarded as a superposition of fragmented and molecular states.</p><p>A study of the <i>X</i>-state of HCl<sup>+</sup>, populated via a core-excited state, shows a selective population of the final state. The explanation was shown to be that the magnetic orientation of the core-hole is transferred to the final state of the molecule.</p><p>A setup for data acquisition of Photo-Electron Photo-Ion Photo-Ion COincidence (PEPIPICO) measurements using a Time-Of-Flight (TOF) spectrometer has been developed. A Time-to-Digital Converter (TDC) card has been linked together with the data treatment program Igor as a user interface. Furthermore, the PEPIPICO spectrometer has been characterized to provide a solid basis for the analysis of experimental data.</p>
2

Photoelectron Spectroscopy on HCl and DCl : Synchrotron Radiation Based Studies of Dissociation Dynamics

Burmeister, Florian January 2003 (has links)
Dissociation dynamics of the ionized molecules HCl and the deuterated system DCl has been studied in gas-phase using synchrotron based photoelectron spectroscopy (PES). The inner-valence "(4σ)-1" photoionization band for DCl and HCl was recorded using maximum resolution in order to probe an interference pattern between a dissociative and a bound electronic state. For HCl+, we clearly observed distorted Fano-type peaks even for modest resolution, whereas for DCl+, the pattern was hardly discernible. The observation in HCl+ has been explained by a coupling between two adiabatic electronic states, where the bound state was populated through non-adiabatic curve-crossing. The nuclear motion of HCl+ is too fast for the Born-Oppenheimer approximation to be fully valid in this case. Whereas for DCl+, with larger reduced mass and therefore slower nuclear motion, the non-adiabatic coupling is less pronounced, and the vibrational progression vanishes. A comparative study between PES and threshold photoelectron spectra (TPES) of the inner-valence bands of HCl and DCl has been performed, showing differences in intensities and shapes of the vibrational bands. These differences were attributed to the fact that the sudden approximation, which can be assumed to be valid for PES, is violated in the case of TPES. A resonant Auger electron spectroscopy study of HCl and DCl has been performed, which shows an interference pattern between atomic and molecular Auger- and photoelectron channels. The atomic features are associated with ultra-fast dissociation of the molecules, on the same time scale as the Auger decay. The observation shows that the excited molecular system has to be regarded as a superposition of fragmented and molecular states. A study of the X-state of HCl+, populated via a core-excited state, shows a selective population of the final state. The explanation was shown to be that the magnetic orientation of the core-hole is transferred to the final state of the molecule. A setup for data acquisition of Photo-Electron Photo-Ion Photo-Ion COincidence (PEPIPICO) measurements using a Time-Of-Flight (TOF) spectrometer has been developed. A Time-to-Digital Converter (TDC) card has been linked together with the data treatment program Igor as a user interface. Furthermore, the PEPIPICO spectrometer has been characterized to provide a solid basis for the analysis of experimental data.
3

Dissociation dynamics of diatomic molecules in intense fields

Magrakvelidze, Maia January 1900 (has links)
Doctor of Philosophy / Department of Physics / Uwe Thumm / We study the dynamics of diatomic molecules (dimers) in intense IR and XUV laser fields theoretically and compare the results with measured data in collaboration with different experimental groups worldwide. The first three chapters of the thesis cover the introduction and the background on solving time-independent and time-dependent Schrödinger equation. The numerical results in this thesis are presented in four chapters, three of which are focused on diatomic molecules in IR fields. The last one concentrates on diatomic molecules in XUV pulses. The study of nuclear dynamics of H[subscript]2 or D[subscript]2 molecules in IR pulses is given in Chapter 4. First, we investigate the optimal laser parameters for observing field-induced bond softening and bond hardening in D[subscript]2[superscript]+. Next, the nuclear dynamics of H[subscript]2[superscript]+ molecular ions in intense laser fields are investigated by analyzing their fragment kinetic-energy release (KER) spectra as a function of the pump-probe delay τ. Lastly, the electron localization is studied for long circularly polarized laser pulses. Chapter 5 covers the dissociation dynamics of O[subscript]2[superscript]+ in an IR laser field. The fragment KER spectra are analyzed as a function of the pump-probe delay τ. Within the Born-Oppenheimer approximation, we calculate ab-initio adiabatic potential-energy curves and their electric dipole couplings, using the quantum chemistry code GAMESS. In Chapter 6, the dissociation dynamics of the noble gas dimer ions He[subscript]2[superscript]+, Ne[subscript]2[superscript]+, Ar[subscript]2[superscript]+, Kr[subscript]2[superscript]+, and Xe[subscript]2[superscript]+ is investigated in ultrashort pump and probe laser pulses of different wavelengths. We observe a striking ‘‘delay gap’’ in the pump-probe-delay-dependent KER spectrum only if the probe-pulse wavelength exceeds the pump-pulse wavelength. Comparing pump-probe-pulse-delay dependent KER spectra for different noble gas dimer cations, we quantitatively discuss quantum-mechanical versus classical aspects of the nuclear vibrational motion as a function of the nuclear mass. Chapter 7 focuses on diatomic molecules in XUV laser pulses. We trace the femtosecond nuclear-wave-packet dynamics in ionic states of oxygen and nitrogen diatomic molecules by comparing measured kinetic-energy-release spectra with classical and quantum-mechanical simulations. Experiments were done at the free-electron laser in Hamburg (FLASH) using 38-eV XUV-pump–XUV-probe. The summary and outlook of the work is discussed in Chapter 8.
4

Photofragment velocity-map imaging of organic molecules

Gardiner, Sara Heather January 2014 (has links)
Photofragment velocity-map imaging (VMI) has generally been employed to investigate the photodissociation dynamics of relatively small molecular systems (< 5 atoms). The work reported in this thesis focuses on the application of this technique for the investigation of the unimolecular photodissociation of larger chemical systems, which are of interest to a broad cross section of the chemical community. Typically, VMI studies involve state-selective detection of one particular fragmentation product, and so are often limited to the investigation of a single dissociation channel. By employing vacuum ultra-violet (VUV) photoionization, we are able to detect most, if not all of the fragments resulting from the dissociation of a neutral species, with ‘universal’ ionization being achieved in the ideal case when the fragment ionization energies are all lower than the VUV photon energy. This capability becomes particularly important when investigating larger systems, since these often display complex dynamics with multiple competing fragmentation pathways. Our approach allows us to investigate the different photofragmentation processes occurring for a particular system, to evaluate the relative importance of the active dissociation channels, and to gain insight into the energy partitioning amongst the fragments. A study of the UV photodissociation of two neutral alkyl iodide molecules demonstrates the first use in our laboratory of ‘universal’ ionization in combination with VMI. Studies into the photofragmentation processes resulting from 193 nm photoexcitation of neutral N,N-dimethylformamide, a small-molecule model for a peptide bond, and a number of neutral cyclic alkenes, which undergo the retro-Diels-Alder reaction, are also presented. The remaining studies presented in this thesis have investigated the photofragmentation processes of ionic species, generated by means of VUV photoionization. In the case of ion dissociation each fragmentation channel necessarily produces one charged species, which may be detected using the VMI technique. Therefore, such studies provide an insight into all of the active channels. An in-depth VMI study of the UV photodissociation of two ethyl halide cations is presented, which demonstrates the successful investigation of the multiple photofragmentation pathways of these ionic species. The remainder of the cation photodissociation studies are of relevance to a number of common processes known to occur in mass spectrometry, including the McLafferty rearrangement, the retro-Diels-Alder reaction, and ‘peptide’ bond fragmentation. By velocity-map imaging the products of these reactions, further information is obtained concerning these dissociation processes, which are no doubt of interest to the wider chemical community. This work forms part of the velocity-map imaging mass spectrometry (VMImMS) project. VMImMS involves imaging each of the fragmentation products that result from dissociation of a parent molecule of interest, with the aim of increasing the amount of information that can be obtained from a mass-spectrometry-type experiment. The work presented in this thesis demonstrates that VMImMS allows us to unravel details of the dissociation dynamics of both neutral and ionic species, and is potentially a powerful technique for investigating the fragmentation processes of increasingly complex systems.

Page generated in 0.146 seconds