• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical enhancement of transdermal drug delivery: polysaccharide dissolving microneedles and micro thermal skin ablation

Lee, Jeong Woo 07 April 2009 (has links)
Transdermal drug delivery system has been limited to small and lipophilic drugs because skin has the intrinsic function to protect the body preventing entry of the external species into the body. In this thesis, two physical methods were studied to overcome the skin barrier in the controlled breakage of the skin barrier and to deliver macromolecules-based drugs through the skin; (1) polysaccharide dissolving microneedles and (2) micro thermal skin ablation. Polysaccharide dissolving microneedles system was designed to break the skin barrier in a minimized size with the mechanically poor material, to release them into skin with the dissolution of microneedles, and to deliver human growth hormone into the living hairless rats. Micro thermal skin ablation was designed to fabricate the device generating the energy impact with the basis of arc discharge, to transfer the energy impact on the skin, to remove stratum corneum selectively with three-dimensionally controlled manner, and to deliver hydrophilic macromolecules through skin.
2

Dissolving and Swelling Hydrogel-Based Microneedles: An Overview of Their Materials, Fabrication, Characterization Methods, and Challenges

Shriky, Banah, Babenko, Maksims, Whiteside, Benjamin R. 09 October 2023 (has links)
Yes / Polymeric hydrogels are a complex class of materials with one common feature—the ability to form three-dimensional networks capable of imbibing large amounts of water or biological fluids without being dissolved, acting as self-sustained containers for various purposes, including pharmaceutical and biomedical applications. Transdermal pharmaceutical microneedles are a pain-free drug delivery system that continues on the path to widespread adoption—regulatory guidelines are on the horizon, and investments in the field continue to grow annually. Recently, hydrogels have generated interest in the field of transdermal microneedles due to their tunable properties, allowing them to be exploited as delivery systems and extraction tools. As hydrogel microneedles are a new emerging technology, their fabrication faces various challenges that must be resolved for them to redeem themselves as a viable pharmaceutical option. This article discusses hydrogel microneedles from a material perspective, regardless of their mechanism of action. It cites the recent advances in their formulation, presents relevant fabrication and characterization methods, and discusses manufacturing and regulatory challenges facing these emerging technologies before their approval.

Page generated in 0.0838 seconds