Spelling suggestions: "subject:"dissolving pulps"" "subject:"dissolvings pulps""
1 |
Model studies of cellulose fibers and films and their relation to paper strengthFält, Susanna January 2003 (has links)
<p>The objectives of this work were (i) to develop a new methodfor the preparation of thin cellulose model films, (ii) to usethese model films for swelling measurements and (iii) to relatethe swelling of fibers and films to the dry strength ofpaper.</p><p>In the new film preparation method, NMMO(N-methylmorpholine-N-oxide) was used to dissolve cellulose andDMSO (dimethyl sulfoxide) was added to control the viscosity ofthe cellulose solution. A dilute solution of the cellulose wasspin-coated onto a silicon oxide wafer and the cellulose filmthus prepared was then precipitated in deionised water. Asaturated layer of glyoxalated-polyacrylamide was used toanchor the film onto the silicon oxide wafer. This proceduregave films with thicknesses in the range of 20-270 nm. Thefilms were cleaned in deionised water and were found by ESCAanalysis and contact angle measurements (θ<20°)to be free from solvents. Solid state NMR measurements onfibers spun from NMMO also indicated that the model filmconsisted of about 50% crystalline material and that thecrystalline structure was of the cellulose II type.Determination of the molecular weight distribution of thecellulose surface material showed that the NMMO treatmentcaused only a minor breakdown of the cellulose chains and thatlow molecular mass oligomers of glucose were not created.</p><p>It was further shown that atomic force microscopy (AFM)measurements could be used to determine the thicknessof thecellulose films, in both the dry and wet states. The thicknesswas determined as the height difference between the top surfaceand the underlying silica wafer measured at a position where anincision had been made in the cellulose film. The cellulosesolutions were also directly spin-coated onto the crystal usedin the Quartz crystal microbalance (QCM-D), pre-treated withthe same type of anchoring polymer. With this application,these model surfaces were shown to be suitable for swellingmeasurements with the QCM-D. The extent of swelling and theswelling kinetics in the presence of electrolytes, such asNaCl, CaCl2 and Na2SO4, and at different pH were measured inthis way. The films were found to be very stable during thesemeasurements and the results were comparable to the swellingresults obtained for the corresponding pulps. The swelling ofboth fibers and films followed the general behavior ofpolyelectrolyte gels in the presence of electrolytes and was inaccordance with the Donnan equilibrium theory. The films havebeen shown to differ from fibers with regard to the absence ofa covalent interior network. This influences the evaluation ofthe deswelling effects measured on the model films. Theswelling effect seen with different electrolytes has also beenconsidered in relation to the tensile strength of paperprepared from a kraftliner-pulp. In this study, it was foundthat there was no direct relationship between the swelling ofthe fibers, measured as WRV, and the strength of the paper inthe presence of different electrolytes at pH 5.</p><p><b>KEYWORDS:</b>absorption, carboxymethyl cellulose,cellulose, cellulose fibers, dissolving pulps, donnanequilibrium, electrolytes, film, ion exchange, ionization,kinetics, liner boards, microscopy, spinning, surfaces,swelling, tensile strength, water, water retention value.</p>
|
2 |
Model studies of cellulose fibers and films and their relation to paper strengthFält, Susanna January 2003 (has links)
The objectives of this work were (i) to develop a new methodfor the preparation of thin cellulose model films, (ii) to usethese model films for swelling measurements and (iii) to relatethe swelling of fibers and films to the dry strength ofpaper. In the new film preparation method, NMMO(N-methylmorpholine-N-oxide) was used to dissolve cellulose andDMSO (dimethyl sulfoxide) was added to control the viscosity ofthe cellulose solution. A dilute solution of the cellulose wasspin-coated onto a silicon oxide wafer and the cellulose filmthus prepared was then precipitated in deionised water. Asaturated layer of glyoxalated-polyacrylamide was used toanchor the film onto the silicon oxide wafer. This proceduregave films with thicknesses in the range of 20-270 nm. Thefilms were cleaned in deionised water and were found by ESCAanalysis and contact angle measurements (θ<20°)to be free from solvents. Solid state NMR measurements onfibers spun from NMMO also indicated that the model filmconsisted of about 50% crystalline material and that thecrystalline structure was of the cellulose II type.Determination of the molecular weight distribution of thecellulose surface material showed that the NMMO treatmentcaused only a minor breakdown of the cellulose chains and thatlow molecular mass oligomers of glucose were not created. It was further shown that atomic force microscopy (AFM)measurements could be used to determine the thicknessof thecellulose films, in both the dry and wet states. The thicknesswas determined as the height difference between the top surfaceand the underlying silica wafer measured at a position where anincision had been made in the cellulose film. The cellulosesolutions were also directly spin-coated onto the crystal usedin the Quartz crystal microbalance (QCM-D), pre-treated withthe same type of anchoring polymer. With this application,these model surfaces were shown to be suitable for swellingmeasurements with the QCM-D. The extent of swelling and theswelling kinetics in the presence of electrolytes, such asNaCl, CaCl2 and Na2SO4, and at different pH were measured inthis way. The films were found to be very stable during thesemeasurements and the results were comparable to the swellingresults obtained for the corresponding pulps. The swelling ofboth fibers and films followed the general behavior ofpolyelectrolyte gels in the presence of electrolytes and was inaccordance with the Donnan equilibrium theory. The films havebeen shown to differ from fibers with regard to the absence ofa covalent interior network. This influences the evaluation ofthe deswelling effects measured on the model films. Theswelling effect seen with different electrolytes has also beenconsidered in relation to the tensile strength of paperprepared from a kraftliner-pulp. In this study, it was foundthat there was no direct relationship between the swelling ofthe fibers, measured as WRV, and the strength of the paper inthe presence of different electrolytes at pH 5. KEYWORDS:absorption, carboxymethyl cellulose,cellulose, cellulose fibers, dissolving pulps, donnanequilibrium, electrolytes, film, ion exchange, ionization,kinetics, liner boards, microscopy, spinning, surfaces,swelling, tensile strength, water, water retention value. / <p>NR 20140805</p>
|
3 |
The oxidation of pulps with lead tetraacetateDetrick, Richard William 01 January 1960 (has links)
No description available.
|
4 |
Concepts et développements pour la production de cellulose blanchie, pure ou oxydée à partir de matière lignocellulosique à recycler / Concepts and developments for the production of bleached, pure or oxidized cellulosic pulp from recycled lignocellulosic material.Dollie, Lucas 27 May 2019 (has links)
Les papiers et cartons récupérés sont aujourd’hui recyclés en nouveaux matériaux similaires, en particulier les vieux cartons sont transformés en nouveaux cartons. Riches en matière lignocellulosique, les cartons récupérés pourraient remplacer le bois dans la production de produits de plus haute valeur ajoutée. Ainsi la thèse a exploré le potentiel de procédés existants de délignification, blanchiment et purification, appliqués sur des mélanges fibreux simulant la composition de différents cartons, pour la production de pâte papetière blanchie et de pâte à dissoudre.Le traitement appliqué est composé d’une cuisson Kraft, suivie d’une séquence de blanchiment classique D0-Ep-D1 puis, dans le cas de la production de pâte à dissoudre, d’une purification de type CCE. Les cartons à traiter ayant des compositions fibreuses variables, toute l’étude a été conduite sur des mélanges fibreux modèles, composés de fibres de pâte Kraft écrue et de pâte mécanique. Dans tous les cas, des pâtes blanchies ont été produites, même si leur degré de polymérisation est parfois en deçà des standards. En revanche, les pâtes sont difficiles à purifier. Par ailleurs, il a été montré que la qualité du produit final, les performances des procédés et leur impact environnemental, dépendent de la composition fibreuse du mélange. Enfin le traitement d’un carton industriel a révélé que les charges minérales contenues dans le matériau limitent sa revalorisation.La faible qualité des pâtes blanchies obtenues a conduit à tester une autre voie de valorisation, la production de cellulose oxydée pour MFC. Un nouveau procédé de pré-oxydation pour les pâtes Kraft écrue a été développé : il combine blanchiment et oxydation du substrat dans un stade unique en utilisant le catalyseur TEMPO avec du dioxyde de chlore et de l’hypochlorite de sodium. Des MFC de qualité équivalente à celles produites à partir de pâte blanchie préoxydée par le système TEMPO/NaClO/NaBr ont été obtenues. / Today recovered papers and boards are recycled into similar products; in particular old corrugated boards are transformed into new corrugated boxes. Rich in lignocellulosic material, recovered carton boards might replace wood for the production of hgiher added-value products. The thesis investigated the potential of existing delignification, bleaching and purification processes, applied on fibre mixes simulating the composition of various carton boards, for the production of bleached paper pulp and dissolving pulp grades.The treatment was composed of a Kraft cook, followed by a conventional D0-Ep-D1 bleaching sequence, and in the case of dissolving pulp production, a CCE stage for cellulose purification. Because carton boards exhibit various fiber compositions, all the study has been conducted on model mixes, made of fibres from unbleached Kraft pulp and mechanical pulp. In all cases, bleached pulps have been successfully obtained, although pulp viscosity was sometimes below the standards. However the bleached pulps were found difficult to purify. Moreover, it has been shown that the quality of the final product, the performances of the processes and their environmental impact, depended on the fiber composition of the mix. Finally, the treatment of an industrial carton board revealed that mineral fillers contained in the material limit its upcycling.Because of the low quality of the bleached pulp produced, another valorization way was tested: the production of oxidized cellulose for MFC. A new pre-oxidation process for unbleached Kraft pulp has been developed, combining bleaching and oxidation of the substrate in a single stage combining stage combining the use of TEMPO as a catalyst, chlorine dioxide and sodium hypochlorite. MFC of same quality as those produced from bleached Kraft pulp pre-oxidized by the classical TEMPO/NaClO/NaBr system have been obtained.
|
Page generated in 0.0475 seconds