• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a variable-temperature ion mobility/ time-of-flight mass spectrometer for separation of electronic isomers

Verbeck, Guido Fridolin 29 August 2005 (has links)
The construction of a liquid nitrogen-cooled ion mobility spectrometer coupled with time-of-flight mass spectrometry was implemented to demonstrate the ability to discriminate between electronic isomers. Ion mobility allows for the separation of ions based on differing cross-sections-to-charge ratio. This allows for the possible discrimination of species with same mass if the ions differ by cross-section. Time-offlight mass spectrometry was added to mass identify the separated peak for proper identification. A liquid nitrogen-cooled mobility cell was employed for a two-fold purpose. First, the low temperatures increase the peak resolution to aid in resolving the separated ions. This is necessary when isomers may have similar cross-sections. Second, low temperature shortens the mean free path and decreases the neutral buffer gas speeds allowing for more interactions between the ions and the drift gas. Kr2+ study was performed to verify instrument performance. The variable-temperature ion mobility spectrometer was utilized to separate the distonic and conventional ion forms of CH3OH, CH3F, and CH3NH2 and to discriminate between the keto and enol forms of the acetone radical cation. Density functional theory and ab initio calculations were employed to aid in proper identification of separating isomers. Monte Carlo integration tools were also developed to predict ion cross-section and resolution within a buffer gas.
2

Reactions of Ionised Pryridazine, 2-Aminopyrazine and 2-Aminopyridine and their a-Distonic Isomers.

Karapanayiotis, Thanassis, Dimopolos-Italiano, G., Bowen, Richard D., Terlouw, J.K. January 2004 (has links)
No / The reactions of ionised pyridazine, aminopyrazine and aminopyridine and the corresponding ¿-distonic ions are examined by a combination of tandem mass spectrometric techniques, including analysis of metastable ion (MI), collision induced dissociation and neutralisation¿reionisation mass spectra (NRMS). Further insight into the relative stability and energy barriers towards tautomerism of each ionised heterocycle with its ¿-distonic isomer is obtained by computational methods. In all these systems, both the conventional radical-cation and the ¿-distonic tautomer are stable species which exist in discrete energy wells, with a significant barrier towards their interconversion. Although each ¿-distonic ion is sufficiently stable to survive neutralisation¿reionisation, the conventional ionised heterocycle is more stable in each case. The possibility of investigating proton-transport catalysis in the tautomerism of these ionic systems is discussed.

Page generated in 0.046 seconds