• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Brillouin Scattering Spectrum in LEAF Fiber

Liu, Xuan 06 December 2011 (has links)
Fiber optic sensors are designed to measure various parameters. The distributed fiber optics sensor has been a very promising candidate for the structural health monitoring. In this thesis, we characterized LEAF (Large Effective Area Fiber) fiber’s Brillouin scattering spectrum and investigated its potentiality for the distributed Brillouin temperature and strain sensor. Optical fibers with complex refractive index profiles are applied to improve the Brillouin threshold by varying the Brillouin linewidth. As LEAF fiber has a modified refractive index profile, we investigated its Brillouin linewidth’s dependence on the square of the pump light’s frequency. We verified the Brillouin frequency’s variation with input SOP experimentally for LEAF fiber in the spontaneous regime. This sets a limitation for the frequency resolution of distributed Brillouin sensors. We also realized a simultaneous temperature and strain sensor with LEAF fiber applying the Brillouin optical time domain analysis. Based on the direct detection of LEAF beat frequencies, a simultaneous strain and temperature sensor was demonstrated.
2

Characterization of Brillouin Scattering Spectrum in LEAF Fiber

Liu, Xuan 06 December 2011 (has links)
Fiber optic sensors are designed to measure various parameters. The distributed fiber optics sensor has been a very promising candidate for the structural health monitoring. In this thesis, we characterized LEAF (Large Effective Area Fiber) fiber’s Brillouin scattering spectrum and investigated its potentiality for the distributed Brillouin temperature and strain sensor. Optical fibers with complex refractive index profiles are applied to improve the Brillouin threshold by varying the Brillouin linewidth. As LEAF fiber has a modified refractive index profile, we investigated its Brillouin linewidth’s dependence on the square of the pump light’s frequency. We verified the Brillouin frequency’s variation with input SOP experimentally for LEAF fiber in the spontaneous regime. This sets a limitation for the frequency resolution of distributed Brillouin sensors. We also realized a simultaneous temperature and strain sensor with LEAF fiber applying the Brillouin optical time domain analysis. Based on the direct detection of LEAF beat frequencies, a simultaneous strain and temperature sensor was demonstrated.
3

Characterization of Brillouin Scattering Spectrum in LEAF Fiber

Liu, Xuan 06 December 2011 (has links)
Fiber optic sensors are designed to measure various parameters. The distributed fiber optics sensor has been a very promising candidate for the structural health monitoring. In this thesis, we characterized LEAF (Large Effective Area Fiber) fiber’s Brillouin scattering spectrum and investigated its potentiality for the distributed Brillouin temperature and strain sensor. Optical fibers with complex refractive index profiles are applied to improve the Brillouin threshold by varying the Brillouin linewidth. As LEAF fiber has a modified refractive index profile, we investigated its Brillouin linewidth’s dependence on the square of the pump light’s frequency. We verified the Brillouin frequency’s variation with input SOP experimentally for LEAF fiber in the spontaneous regime. This sets a limitation for the frequency resolution of distributed Brillouin sensors. We also realized a simultaneous temperature and strain sensor with LEAF fiber applying the Brillouin optical time domain analysis. Based on the direct detection of LEAF beat frequencies, a simultaneous strain and temperature sensor was demonstrated.
4

Characterization of Brillouin Scattering Spectrum in LEAF Fiber

Liu, Xuan January 2011 (has links)
Fiber optic sensors are designed to measure various parameters. The distributed fiber optics sensor has been a very promising candidate for the structural health monitoring. In this thesis, we characterized LEAF (Large Effective Area Fiber) fiber’s Brillouin scattering spectrum and investigated its potentiality for the distributed Brillouin temperature and strain sensor. Optical fibers with complex refractive index profiles are applied to improve the Brillouin threshold by varying the Brillouin linewidth. As LEAF fiber has a modified refractive index profile, we investigated its Brillouin linewidth’s dependence on the square of the pump light’s frequency. We verified the Brillouin frequency’s variation with input SOP experimentally for LEAF fiber in the spontaneous regime. This sets a limitation for the frequency resolution of distributed Brillouin sensors. We also realized a simultaneous temperature and strain sensor with LEAF fiber applying the Brillouin optical time domain analysis. Based on the direct detection of LEAF beat frequencies, a simultaneous strain and temperature sensor was demonstrated.

Page generated in 0.0564 seconds