Spelling suggestions: "subject:"distributed 1atrix multiplication"" "subject:"distributed 1atrix multiplications""
1 |
Matrix Multiplications on Apache Spark through GPUs / Matrismultiplikationer på Apache Spark med GPUSafari, Arash January 2017 (has links)
In this report, we consider the distribution of large scale matrix multiplications across a group of systems through Apache Spark, where each individual system utilizes Graphical Processor Units (GPUs) in order to perform the matrix multiplication. The purpose of this thesis is to research whether the GPU's advantage in performing parallel work can be applied to a distributed environment, and whether it scales noticeably better than a CPU implementation in a distributed environment. This question was resolved by benchmarking the different implementations at their peak. Based on these benchmarks, it was concluded that GPUs indeed do perform better as long as single precision support is available in the distributed environment. When single precision operations are not supported, GPUs perform much worse due to the low double precision performance of most GPU devices. / I denna rapport betraktar vi fördelningen av storskaliga matrismultiplikationeröver ett Apache Spark kluster, där varje system i klustret delegerar beräkningarnatill grafiska processorenheter (GPU). Syftet med denna avhandling är attundersöka huruvida GPU:s fördel vid parallellt arbete kan tillämpas på en distribuerad miljö, och om det skalar märkbart bättre än en CPU-implementationi en distribuerad miljö. Detta gjordes genom att testa de olika implementationerna i en miljö däroptimal prestanda kunde förväntas. Baserat på resultat ifrån dessa tester drogsslutsatsen att GPU-enheter preseterar bättre än CPU-enheter så länge ramverkethar stöd för single precision beräkningar. När detta inte är fallet så presterar deflesta GPU-enheterna betydligt sämre på grund av deras låga double-precisionprestanda.
|
Page generated in 0.1383 seconds