• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 16
  • 10
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 122
  • 122
  • 38
  • 33
  • 24
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Energy aware techniques for certain problems in Wireless Sensor Networks

Islam, Md Kamrul 27 April 2010 (has links)
Recent years have witnessed a tremendous amount of research in the field of wireless sensor networks (WSNs) due to their numerous real-world applications in environmental and habitat monitoring, fire detection, object tracking, traffic controlling, industrial and machine-health control and monitoring, enemy-intrusion in military battlefields, and so on. However, reducing energy consumption of individual sensors in such networks and obtaining the expected standard of quality in the solutions provided by them is a major challenge. In this thesis, we investigate several problems in WSNs, particularly in the areas of broadcasting, routing, target monitoring, self-protecting networks, and topology control with an emphasis on minimizing and balancing energy consumption among the sensors in such networks. Several interesting theoretical results and bounds have been obtained for these problems which are further corroborated by extensive simulations of most of the algorithms. These empirical results lead us to believe that the algorithms may be applied in real-world situations where we can achieve a guarantee in the quality of solutions with a certain degree of balanced energy consumption among the sensors. / Thesis (Ph.D, Computing) -- Queen's University, 2010-04-27 10:19:39.03
22

The Device Discovery in Bluetooth Scatternet Formation Algorithm

Jedda, Ahmed 25 May 2010 (has links)
The Bluetooth Scatternet Formation (BSF) problem can be defined as the problem of forming wireless networks of Bluetooth devices in an efficient manner. A number of restrictions imposed by the Bluetooth specifications make the BSF problem challenging and unique. Many interesting solution algorithms have been proposed in the literature to solve this problem. In this thesis, we investigate the BSF problem. We concentrate on problems introduced by the procedures of device discovery of the Bluetooth specifications and on the different solutions used by BSF algorithms to deal with these problems. We study also in this thesis problems introduced by the specifications of link establishment in Bluetooth due to their close interaction with the device discovery specifications. We survey and categorize the different device discovery techniques used by BSF algorithms. This categorization is then used as a basis to identify the different theoretical computational models used to study BSF algorithms. We argue, in this thesis, that the currently available models for Bluetooth wireless networks do not model adequately, in most cases, the complexities of the Bluetooth specifications and we show that these models were oversimplified in many cases. A general computational model will be useful as a starting point to design BSF algorithms and to compare the different and numerous BSF algorithms – especially in term of the execution time efficiency. In this thesis, we provide a set of suggestions that will help in the creation of such model. We survey a number of studies that examined in more depth the specifications of device discovery in Bluetooth. We survey also other studies that attempted to simplify the Bluetooth network model, either by suggesting modifications on the Bluetooth specifications or by the use of communication technologies other than Bluetooth. Finally, we present some experiments accompanied with analyzes to show the complexities of the Bluetooth specifications and their sensitivity to minor changes (whether in the specifications or in their implementation).
23

Secure multiparty computation

Dong, Renren. January 2009 (has links)
Thesis (M.S.)--Bowling Green State University, 2009. / Document formatted into pages; contains vii, 66 p. Includes bibliographical references.
24

Asynchronous Backup and Initialization of a Database Server for Replicated Database Systems

Bhalla, Subhash, Madnick, Stuart E. 14 April 2003 (has links)
A possibility of a temporary disconnection of database service exists in many computing environments. It is a common need to permit a participating site to lag behind and re-initialize to full recovery. It is also necessary that active transactions view a globally consistent system state for ongoing operations. We present an algorithm for on-the-fly backup and site-initialization. The technique is non-blocking in the sense that failure and recovery procedures do not interfere with ordinary transactions. As a result the system can tolerate disconnection of services and reconnection of disconnected services, without incurring high overheads
25

RamboNodes for the Metropolitan Ad Hoc Network

Beal, Jacob, Gilbert, Seth 17 December 2003 (has links)
We present an algorithm to store data robustly in a large, geographically distributed network by means of localized regions of data storage that move in response to changing conditions. For example, data might migrate away from failures or toward regions of high demand. The PersistentNode algorithm provides this service robustly, but with limited safety guarantees. We use the RAMBO framework to transform PersistentNode into RamboNode, an algorithm that guarantees atomic consistency in exchange for increased cost and decreased liveness. In addition, a half-life analysis of RamboNode shows that it is robust against continuous low-rate failures. Finally, we provide experimental simulations for the algorithm on 2000 nodes, demonstrating how it services requests and examining how it responds to failures.
26

DISTRIBUTED CONTROL AND OPTIMIZATION IN MULTI-AGENT SYSTEMS

Xuan Wang (8948108) 16 June 2020 (has links)
<div>In recent years, the collective behaviors in nature have motivated rapidly expanding research efforts in the control of multi-agent systems. A multi-agent system is composed of multiple interacting subsystems (agents). In order to seek approaches that respect the network nature of multi-agent systems, distributed algorithms has recently received a significant amount of research attention, the goal of which is allowing multi-agent systems to accomplish global objectives through only local coordination. </div><div> Under this scope, we consider three major problems in this dissertation, namely, distributed computation, distributed optimization, and the resilience of distributed algorithms. First, for distributed computation, we devise distributed algorithms for solving linear equations, which can eliminate the initialization step for agents; converge to the minimum $l_1$ and $l_2$ solutions of under-determined linear equations; achieve ultimate scalability inters of agents' local storage and local states. Second, for distributed optimization, we introduce a new method for algorithm discretization so that the agents no longer have to carefully choose their step-size. We also introduce a new distributed optimization approach that can achieve better convergence rate with lower bandwidth requirement. Finally, for the resilience of distributed algorithms, we propose a new approach that allow normal agents in the multi-agent system to automatically isolate any false information from malicious agents without identification process. Though out the dissertation, all mentioned results are theoretically guaranteed and numerically validated.</div>
27

Multi-Agent Reinforcement Learning: Analysis and Application

Paulo Cesar Heredia (12428121) 20 April 2022 (has links)
<p>With the increasing availability of data and the rise of networked systems such as autonomous vehicles, drones, and smart girds, the application of data-driven, machine learning methods with multi-agents systems have become an important topic. In particular, reinforcement learning has gained a lot of popularity due to its similarities with optimal control, with the potential of allowing us to develop optimal control systems using only observed data and without the need for a model of a system's state dynamics. In this thesis work, we explore the application of reinforcement learning with multi-agents systems, which is known as multi-agent reinforcement learning (MARL). We have developed algorithms that address some challenges in the cooperative setting of MARL. We have also done work on better understanding the convergence guarantees of some known multi-agent reinforcement learning algorithms, which combine reinforcement learning with distributed consensus methods. And, with the aim of making MARL better suited to real-world problems, we have also developed algorithms to address some practical challenges with MARL and we have applied MARL on a real-world problem.</p> <p>In the first part of this thesis, we focus on developing algorithms to address some open problems in MARL. One of these challenges is learning with output feedback, which is known as partial observability in the reinforcement learning literature. One of the main assumptions of reinforcement learning in the singles agent case is that the agent can fully observe the state of the plant it is controlling (we note the “plant" is often referred to as the “environment" in the reinforcement learning literature. We will use these terms interchangeably). In the single agent case this assumption can be reasonable since it only requires one agent to fully observe its environment. In the multi-agent setting, however, this assumption would require all agents to fully observe the state and furthermore since each agent could affect the plant (or environment) with its actions, the assumption would also require that agent's know the actions of other agents. We have also developed algorithms to address practical issues that may arise when applying reinforcement learning (RL) or MARL on large-scale real-world systems. One such algorithm is a distributed reinforcement learning algorithm that allows us to learn in cases where the states and actions are both continuous and of large dimensionality, which is the case for many real-world applications. Without the ability to handle continuous states and actions, many algorithms require discretization, which with high dimensional systems can become impractical. We have also developed a distributed reinforcement learning algorithm that addresses data scalability of RL. By data scalability we mean how to learn from a very large dataset that cannot be efficiently processed by a single agent with limited resources.</p> <p>In the second part of this thesis, we provide a finite-sample analysis of some distributed reinforcement learning algorithms. By finite-sample analysis, we mean we provide an upper bound on the squared error of the algorithm for a given iteration of the algorithm. Or equivalently, since each iteration uses one data sample, we provide an upper bound of the squared error for a given number of data samples used. This type of analysis had been missing in the MARL literature, where most works on MARL have only provided asymptotic results for their proposed algorithms, which only tells us how the algorithmic error behaves as the number of samples used goes to infinity. </p> <p>The third part of this thesis focuses on applications with real-world systems. We have explored a real-world problem, namely transactive energy systems (TES), which can be represented as a multi-agent system. We have applied various reinforcement learning algorithms with the aim of learning an optimal control policy for this system. Through simulations, we have compared the performance of these algorithms and have illustrated the effect of partial observability (output feedback) when compared to full state feedback.</p> <p>In the last part we present some other work, specifically we present a distributed observer that aims to address learning with output feedback by estimating the state. The proposed algorithm is designed so that we do not require a complete model of state dynamics, and instead we use a parameterized model where the parameters are estimated along with the state.</p>
28

Energy Management and Privacy in Smart Grids

Salinas Monroy, Sergio Alfonso 14 August 2015 (has links)
Despite the importance of power systems in today’s societies, they suffer from aging infrastructure and need to improve the efficiency, reliability, and security. Two issues that significantly limit the current grid’s efficient energy delivery and consumption are: loadollowing generation dispatch, and energy theft. A loadollowing generation dispatch is usually employed in power systems, which makes continuous small changes so as to account for differences between the actual energy demand and the predicted values. This approach has led to an average utilization of energy generation capacity below 55% [49]. Moreover, energy theft causes several billion dollar losses to U.S. utility companies [31] [16], while in developing countries it can amount to 50% of the total energy delivered [48]. Recently, the Smart Grid has been proposed as a new electric grid to modernize current power grids and enhance its efficiency, reliability, and sustainability. Particularly, in the Smart Grid, a digital communication network is deployed to enable two-way communications between users and system operators. It thus makes it possible to shape the users’ load demand curves by means of demand response strategies. Additionally, in the Smart Grid, traditional meters will be replaced with cyber-physical devices, called smart meters, capable of recording and transmitting users’ real-time power consumption. Due to their monitoring capabilities, smart meters offer a great opportunity to detect energy theft in smart grids, but also raise serious concerns about users’ privacy. In this dissertation, we design optimal load scheduling schemes to enhance system efficiency, and develop energy theft detection algorithms that can preserve users’ privacy.
29

The Device Discovery in Bluetooth Scatternet Formation Algorithm

Jedda, Ahmed January 2009 (has links)
The Bluetooth Scatternet Formation (BSF) problem can be defined as the problem of forming wireless networks of Bluetooth devices in an efficient manner. A number of restrictions imposed by the Bluetooth specifications make the BSF problem challenging and unique. Many interesting solution algorithms have been proposed in the literature to solve this problem. In this thesis, we investigate the BSF problem. We concentrate on problems introduced by the procedures of device discovery of the Bluetooth specifications and on the different solutions used by BSF algorithms to deal with these problems. We study also in this thesis problems introduced by the specifications of link establishment in Bluetooth due to their close interaction with the device discovery specifications. We survey and categorize the different device discovery techniques used by BSF algorithms. This categorization is then used as a basis to identify the different theoretical computational models used to study BSF algorithms. We argue, in this thesis, that the currently available models for Bluetooth wireless networks do not model adequately, in most cases, the complexities of the Bluetooth specifications and we show that these models were oversimplified in many cases. A general computational model will be useful as a starting point to design BSF algorithms and to compare the different and numerous BSF algorithms – especially in term of the execution time efficiency. In this thesis, we provide a set of suggestions that will help in the creation of such model. We survey a number of studies that examined in more depth the specifications of device discovery in Bluetooth. We survey also other studies that attempted to simplify the Bluetooth network model, either by suggesting modifications on the Bluetooth specifications or by the use of communication technologies other than Bluetooth. Finally, we present some experiments accompanied with analyzes to show the complexities of the Bluetooth specifications and their sensitivity to minor changes (whether in the specifications or in their implementation).
30

Distributed Learning Algorithms for Sensor Networks

Ramakrishnan, Naveen 02 November 2010 (has links)
No description available.

Page generated in 0.076 seconds