• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Distributed Detection Using Convolutional Codes

Wu, Chao-yi 05 September 2008 (has links)
In this thesis, we consider decentralized multiclass classification problem in wireless sensor networks. In literature, the decentralized detection using error correcting code has been shown to have good fault-tolerance capability. In this thesis, we provide fault-tolerance capability by employing the code with a particular structure so that the decoding at the fusion center can be efficient. Specifically, the convolution code is employed to decode the local decision vector sent from all the local sensors. In addition, we proposed an efficient convolution code design algorithm by using simulated annealing. The simulation result shows that the proposed approach has good performance.
2

Classificação distribuída de anuros usando rede de sensores sem fio

Ribas, Afonso Degmar 27 March 2013 (has links)
Made available in DSpace on 2015-04-11T14:02:57Z (GMT). No. of bitstreams: 1 Afonso.pdf: 820074 bytes, checksum: 796ca447ff3c69734519173f92044438 (MD5) Previous issue date: 2013-03-27 / Wireless Sensor Networks (WSNs) can be used in environmental conservation applications and studies due to its wireless communication, sensing, and monitoring capabilities. In the Ecology context, amphibians are used as bioindicators of ecosystemic changes of a region and can early indicate environmental problems. Thus, biologists monitor the anuran (frogs and toads) population in order to establish environmental conservational strategies. Anuran were chosen because the sounds they emit allow classification by using microphones and signal processing. In this work we propose and evaluate some distributed algorithms for anuran classification based on their calls (vocalizations) in the habit using WSNs. This method is interesting because it is not intrusive and it allows remote monitoring. Our solution builds cluster of nodes whose acoustic collected measurements are correlated. The nodes of the same group are combined to generate local classification decisions. Then, these decisions are combined to generate a global decision. We use k-means algorithm for clustering nodes with correlated measurements, which groups instances by similarity. Experiments show that, in comparison with other literature algorithms, the error rate of our solution were 26 pp (percentage points) lower. / As Redes de Sensores Sem Fios (RSSFs) podem ser utilizadas em aplicações de conservação e estudo ambiental devido à sua capacidade de sensoriamento, monitoramento e comunicação sem fio. Dentro do contexto da Ecologia, os anfíbios são utilizados como bioindicadores de mudanças no ecossistema de uma região e podem precocemente indicar problemas ambientais. Desta forma, os biólogos monitoram a população de anuros (sapos e rãs) a fim de estabelecer estratégias de conservação do meio ambiente. Os anuros são escolhidos por causa sons que emitem (coaxar), que permitem a identificação dessas espécies por meio de microfones e processamento do sinal. Portanto, neste trabalho propomos e avaliamos alguns algoritmos distribuídos para classificação de anuros baseados em suas vocalizações em seu habitat usando RSSF. Este método é interessante pois não é intrusivo e permite o monitoramento remoto. Nossa solução cria grupos de nós sensores cujas medidas acústicas coletadas estão correlacionadas. Os dados dos nós de um mesmo grupo são combinados para gerar decisões de classificação locais. Essas decisões são então combinadas para formar uma decisão global. Para agrupar os nós com medidas correlacionadas, utilizamos o algoritmo k-means, que agrupa instâncias similares. Os experimentos mostram que, em comparação com outros algoritmos da literatura, a taxa de erro da nossa solução chegou ser até 26 pp (pontos percentuais) menor.

Page generated in 0.1165 seconds