Spelling suggestions: "subject:"distributionally robust optimization"" "subject:"distributionnally robust optimization""
1 |
Optimization-based approaches to non-parametric extreme event estimationMottet, Clementine Delphine Sophie 09 October 2018 (has links)
Modeling extreme events is one of the central tasks in risk management and planning, as catastrophes and crises put human lives and financial assets at stake.
A common approach to estimate the likelihood of extreme events, using extreme value theory (EVT), studies the asymptotic behavior of the ``tail" portion of data, and suggests suitable parametric distributions to fit the data backed up by their limiting behaviors as the data size or the excess threshold grows.
We explore an alternate approach to estimate extreme events that is inspired from recent advances in robust optimization. Our approach represents information about tail behaviors as constraints and attempts to estimate a target extremal quantity of interest (e.g, tail probability above a given high level) by imposing an optimization problem to find a conservative estimate subject to the constraints that encode the tail information capturing belief on the tail distributional shape.
We first study programs where the feasible region is restricted to distribution functions with convex tail densities, a feature shared by all common parametric tail distributions. We then extend our work by generalizing the feasible region to distribution functions with monotone derivatives and bounded or infinite moments.
In both cases, we study the statistical implications of the resulting optimization problems. Through investigating their optimality structures, we also present how the worst-case tail in general behaves as a linear combination of polynomial decay tails. Numerically, we develop results to reduce these optimization problems into tractable forms that allow solution schemes via linear-programming-based techniques.
|
2 |
Data-Driven Methods for Optimization Under Uncertainty with Application to Water AllocationLove, David Keith January 2013 (has links)
Stochastic programming is a mathematical technique for decision making under uncertainty using probabilistic statements in the problem objective and constraints. In practice, the distribution of the unknown quantities are often known only through observed or simulated data. This dissertation discusses several methods of using this data to formulate, solve, and evaluate the quality of solutions of stochastic programs. The central contribution of this dissertation is to investigate the use of techniques from simulation and statistics to enable data-driven models and methods for stochastic programming. We begin by extending the method of overlapping batches from simulation to assessing solution quality in stochastic programming. The Multiple Replications Procedure, where multiple stochastic programs are solved using independent batches of samples, has previously been used for assessing solution quality. The Overlapping Multiple Replications Procedure overlaps the batches, thus losing the independence between samples, but reducing the variance of the estimator without affecting its bias. We provide conditions under which the optimality gap estimators are consistent, the variance reduction benefits are obtained, and give a computational illustration of the small-sample behavior. Our second result explores the use of phi-divergences for distributionally robust optimization, also known as ambiguous stochastic programming. The phi-divergences provide a method of measuring distance between probability distributions, are widely used in statistical inference and information theory, and have recently been proposed to formulate data-driven stochastic programs. We provide a novel classification of phi-divergences for stochastic programming and give recommendations for their use. A value of data condition is derived and the asymptotic behavior of the phi-divergence constrained stochastic program is described. Then a decomposition-based solution method is proposed to solve problems computationally. The final portion of this dissertation applies the phi-divergence method to a problem of water allocation in a developing region of Tucson, AZ. In this application, we integrate several sources of uncertainty into a single model, including (1) future population growth in the region, (2) amount of water available from the Colorado River, and (3) the effects of climate variability on water demand. Estimates of the frequency and severity of future water shortages are given and we evaluate the effectiveness of several infrastructure options.
|
3 |
Models, algorithms, and distributional robustness in Nash games and related problems / ナッシュゲームと関連する問題におけるモデル・アルゴリズム・分布的ロバスト性Hori, Atsushi 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24741号 / 情博第829号 / 新制||情||139(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 山下 信雄, 教授 太田 快人, 教授 永持 仁 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
4 |
Distributionally Robust Learning under the Wasserstein MetricChen, Ruidi 29 September 2019 (has links)
This dissertation develops a comprehensive statistical learning framework that is robust to (distributional) perturbations in the data using Distributionally Robust Optimization (DRO) under the Wasserstein metric. The learning problems that are studied include: (i) Distributionally Robust Linear Regression (DRLR), which estimates a robustified linear regression plane by minimizing the worst-case expected absolute loss over a probabilistic ambiguity set characterized by the Wasserstein metric; (ii) Groupwise Wasserstein Grouped LASSO (GWGL), which aims at inducing sparsity at a group level when there exists a predefined grouping structure for the predictors, through defining a specially structured Wasserstein metric for DRO; (iii) Optimal decision making using DRLR informed K-Nearest Neighbors (K-NN) estimation, which selects among a set of actions the optimal one through predicting the outcome under each action using K-NN with a distance metric weighted by the DRLR solution; and (iv) Distributionally Robust Multivariate Learning, which solves a DRO problem with a multi-dimensional response/label vector, as in Multivariate Linear Regression (MLR) and Multiclass Logistic Regression (MLG), generalizing the univariate response model addressed in DRLR. A tractable DRO relaxation for each problem is being derived, establishing a connection between robustness and regularization, and obtaining upper bounds on the prediction and estimation errors of the solution. The accuracy and robustness of the estimator is verified through a series of synthetic and real data experiments. The experiments with real data are all associated with various health informatics applications, an application area which motivated the work in this dissertation. In addition to estimation (regression and classification), this dissertation also considers outlier detection applications.
|
5 |
Essays on Individualized Treatment Rules / 個別化処置規則に関する研究Kido, Daido 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(経済学) / 甲第25082号 / 経博第689号 / 新制||経||306(附属図書館) / 京都大学大学院経済学研究科経済学専攻 / (主査)教授 依田 高典, 教授 西山 慶彦, 准教授 柳 貴英 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
6 |
Risk-Averse and Distributionally Robust Optimization:Methodology and ApplicationsRahimian, Hamed 11 October 2018 (has links)
No description available.
|
7 |
Applications and algorithms for two-stage robust linear optimization / Applications et algorithmes pour l'optimisation linéaire robuste en deux étapesCosta da Silva, Marco Aurelio 13 November 2018 (has links)
Le domaine de recherche de cette thèse est l'optimisation linéaire robuste en deux étapes. Nous sommes intéressés par des algorithmes d'exploration de sa structure et aussi pour ajouter des alternatives afin d'atténuer le conservatisme inhérent à une solution robuste. Nous développons des algorithmes qui incorporent ces alternatives et sont personnalisés pour fonctionner avec des exemples de problèmes à moyenne ou grande échelle. En faisant cela, nous expérimentons une approche holistique du conservatisme en optimisation linéaire robuste et nous rassemblons les dernières avancées dans des domaines tels que l'optimisation robuste basée sur les données, optimisation robuste par distribution et optimisation robuste adaptative. Nous appliquons ces algorithmes dans des applications définies du problème de conception / chargement du réseau, problème de planification, problème combinatoire min-max-min et problème d'affectation de la flotte aérienne. Nous montrons comment les algorithmes développés améliorent les performances par rapport aux implémentations précédentes. / The research scope of this thesis is two-stage robust linear optimization. We are interested in investigating algorithms that can explore its structure and also on adding alternatives to mitigate conservatism inherent to a robust solution. We develop algorithms that incorporate these alternatives and are customized to work with rather medium or large scale instances of problems. By doing this we experiment a holistic approach to conservatism in robust linear optimization and bring together the most recent advances in areas such as data-driven robust optimization, distributionally robust optimization and adaptive robust optimization. We apply these algorithms in defined applications of the network design/loading problem, the scheduling problem, a min-max-min combinatorial problem and the airline fleet assignment problem. We show how the algorithms developed improve performance when compared to previous implementations.
|
8 |
[en] CONSERVATIVE-SOLUTION METHODOLOGIES FOR STOCHASTIC PROGRAMMING: A DISTRIBUTIONALLY ROBUST OPTIMIZATION APPROACH / [pt] METODOLOGIAS PARA OBTENÇÃO DE SOLUÇÕES CONSERVADORAS PARA PROGRAMAÇÃO ESTOCÁSTICA: UMA ABORDAGEM DE OTIMIZAÇÃO ROBUSTA À DISTRIBUIÇÕESCARLOS ANDRES GAMBOA RODRIGUEZ 20 July 2021 (has links)
[pt] A programação estocástica dois estágios é uma abordagem
matemática amplamente usada em aplicações da vida real, como planejamento
da operação de sistemas de energia, cadeias de suprimentos,
logística, gerenciamento de inventário e planejamento financeiro. Como
a maior parte desses problemas não pode ser resolvida analiticamente,
os tomadores de decisão utilizam métodos numéricos para obter uma
solução quase ótima. Em algumas aplicações, soluções não convergidas
e, portanto, sub-ótimas terminam sendo implementadas devido a limitações
de tempo ou esforço computacional. Nesse contexto, os métodos
existentes fornecem uma solução otimista sempre que a convergência
não é atingida. As soluções otimistas geralmente geram altos níveis
de arrependimento porque subestimam os custos reais na função objetivo
aproximada. Para resolver esse problema, temos desenvolvido duas
metodologias de solução conservadora para problemas de programação
linear estocástica dois estágios com incerteza do lado direito e suporte retangular:
Quando a verdadeira distribuição de probabilidade da incerteza
é conhecida, propomos um problema DRO (Distributionally Robust Optimization)
baseado em esperanças condicionais adaptadas à uma partição
do suporte cuja complexidade cresce exponencialmente com a dimensionalidade
da incerteza; Quando apenas observações históricas da incerteza
estão disponíveis, propomos um problema de DRO baseado na métrica
de Wasserstein a fim de incorporar ambiguidade sobre a real distribuição
de probabilidade da incerteza. Para esta última abordagem, os métodos
existentes dependem da enumeração dos vértices duais do problema de
segundo estágio, tornando o problema DRO intratável em aplicações
práticas. Nesse contexto, propomos esquemas algorítmicos para lidar
com a complexidade computacional de ambas abordagens. Experimentos
computacionais são apresentados para o problema do fazendeiro, o problema
de alocação de aviões, e o problema do planejamento da operação
do sistema elétrico (unit ommitmnet problem). / [en] Two-stage stochastic programming is a mathematical framework
widely used in real-life applications such as power system operation
planning, supply chains, logistics, inventory management, and financial
planning. Since most of these problems cannot be solved analytically,
decision-makers make use of numerical methods to obtain a near-optimal
solution. Some applications rely on the implementation of non-converged
and therefore sub-optimal solutions because of computational time or
power limitations. In this context, the existing methods provide an optimistic
solution whenever convergence is not attained. Optimistic solutions
often generate high disappointment levels because they consistently
underestimate the actual costs in the approximate objective function.
To address this issue, we have developed two conservative-solution
methodologies for two-stage stochastic linear programming problems
with right-hand-side uncertainty and rectangular support: When the actual
data-generating probability distribution is known, we propose a DRO
problem based on partition-adapted conditional expectations whose complexity
grows exponentially with the uncertainty dimensionality; When
only historical observations of the uncertainty are available, we propose
a DRO problem based on the Wasserstein metric to incorporate ambiguity
over the actual data-generating probability distribution. For this
latter approach, existing methods rely on dual vertex enumeration of the
second-stage problem rendering the DRO problem intractable in practical
applications. In this context, we propose algorithmic schemes to address
the computational complexity of both approaches. Computational experiments
are presented for the farmer problem, aircraft allocation problem,
and the stochastic unit commitment problem.
|
Page generated in 0.1403 seconds