• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Influence of Respiratory Sinus Arrhythmia and Time of Day on Decision Making and Risk Taking

Smith, Leisha J. January 2010 (has links)
Humans make a wide variety of decisions every day - from which route to take to the store to which job offer to accept. It has recently been proposed that two different systems, one affective and intuitive (System 1), the other logical and deliberative (System 2) interact to guide decision making. Neuroimaging research has supported this hypothesis, but other physiological indices of emotion regulation have been largely unexplored in the context of decision making. Respiratory Sinus Arrhythmia (RSA) is an index of cardiac vagal control, and has been shown to mediate emotion regulation, and vary under stress. Both impaired sleep and the phase of the sleep/wake circadian schedule also influence the expression and regulation of emotion. Sleep deprivation has been shown to lead to poor decision-making, but the relationship between sleep/wake circadian rhythms and decision making has been largely unexplored. Physiological indicators of emotion regulation (such as RSA) are likely to interact with sleep/wake circadian rhythms to influence the strategies used in decision making. The present study found that while time of day did not have an independent influence on decision making or risk taking, these functions appear to fluctuate with body temperature, a physiological index of circadian phase, with optimal performance occurring at higher body temperatures. Furthermore, while RSA appears to be unrelated to decision making and risk taking, circadian phase may influence physiological responses to stress (as measured by RSA) at different times of the day. In particular, morning-types may be more reactive to stress in the evening than during the day. Further research is needed to validate and clarify these findings.
2

A COMPARATIVE STUDY OF SLEEP, DIURNAL PATTERNS, AND EYE CLOSURE BETWEEN THE HOUSE MOUSE (MUS MUSCULUS) AND AFRICAN SPINY MOUSE (ACOMYS CAHIRINUS)

Wang, Chanung 01 January 2018 (has links)
To understand the function and origins of sleep, sleep needs to be studied across many different species. Although it is well conserved throughout mammals, 95% of papers are restricted to just three species, Homo sapiens, Mus musculus, and Rattus norvegicus. We aimed to characterize sleep and wake in a Murid rodent Acomys cahirinus in greater detail alongside the well-studied laboratory house mouse (Mus musculus) and wild M. musculus using a well validated, non-invasive, piezoelectric system for sleep and activity monitoring. We confirmed A. cahirinus, M. musculus, and wild M. musculus to be primarily nocturnal, but with clearly distinct behavioral patterns. Specifically, the activity of A. cahirinus sharply increases right at dark onset, which is common in nocturnal species, but surprisingly, decreases sharply just one hour later. Using infra-red camera recordings in single and group cage conditions, we found that A. cahirinus is more active early in the night period than late night period in single and group cages, and this decreased activity in the latter half of the night is much greater compared to M. musculus. In order to better understand these differences in activity, we investigated the sleep architecture of A. cahirinus using electroencephalogram (EEG) recordings. Our data show that A. cahirinus have a few key differences in sleep from M. musculus. A. cahirinus have significantly longer daily sleep periods and exhibit a much higher amount of REM sleep. A. cahirinus are awake at dark onset, but sleep more than M. musculus after the middle of the night. Most strikingly, A. cahirinus do not close their eyes virtually at all while sleeping, day or night. In order to test whether the sleep patterns of A. cahirinus are affected by or responsive to different light input, we set up a light flashing experiment during the daytime. While sleep amount did not change significantly during light flashing, A. cahirinus spent significantly less time in REM compared to baseline. In contrast, M. musculus had no difference in REM sleep percentage. Histological studies showed A. cahirinus have thinner retinal layers, but much thicker corneas than M. musculus. Electroretinography (ERG) results, specifically b-wave amplitudes, are significantly different between these two species. While eye closure and sleep have not been systematically studied across mammals, our observation is clearly a rare behavior. This raises further questions about A. cahirinus sleep architecture, the adaptive value of eyes open sleep to A. cahirius and whether they may have limited visual processing even during normal sleep.
3

The Behavioral Neuroendocrinology of Fish Sex Change: The Role of Steroids and Monoamines

Lorenzi, Varenka 02 July 2009 (has links)
Social status influences reproductive physiology in many species, and sex change in marine teleost fishes provides an excellent model to understand how an organism can modulate its reproductive system in response to social stimuli. The series of experiments presented in this dissertation has focused on the proximate mechanisms underlying sex change and, in particular, the neuroendocrine factors that might translate social information into physiological changes. The bluebanded goby (Lythrypnus dalli) is a sexually plastic fish, and the dominant female typically changes sex when the male is removed from the social group. The direct physical interactions between the male and the females were found to be the main sensory cues that inhibit sex change. Sex steroids can both modulate and be modulated by behavior, and as a result they have been the most obvious candidates for a key role in the regulation of sex change. Males and females showed similar diurnal patterns for steroid hormones, but females had significantly higher water-borne estrogen levels. Concentrations of estradiol, testosterone and 11-ketotestosterone presented sex and tissue differences in brain, gonad and muscle, and they varied in complex ways in different tissues during sex change. The neurotransmitter serotonin (5-HT) has been suggested to be involved in the inhibition of socially regulated sex change because of its role in the modulation of both reproductive and aggressive behavior. None of the pharmacological manipulations performed in L. dalli to alter serotonergic activity was able to overcome the input from the social environment and affect sex change. Neither monoamine levels nor the area or number of 5-HT immunoreactive neurons were different between males, females and sex changers or between dominant and subordinate females. The results do not support the hypothesis of a serotonergic inhibition on sex change in L. dalli, but show that rapid changes in brain androgen levels might be implicated in inducing behavioral or morphological changes associated with sex reversal. Also, steroids respond to changes in the social environment in different ways in different tissues so local steroid synthesis should receive greater attention, and caution is required when using circulating levels to understand behavioral regulation.

Page generated in 0.049 seconds