• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoperiodic and diurnal regulation of WNT signalling in the arcuate nucleus of the 1 female Djungarian hamster, Phodopus sungorus

Boucsein, A., Benzler, J., Hempp, C., Stöhr, S., Helfer, Gisela, Tups, A. 08 December 2015 (has links)
Yes / The WNT pathway was shown to play an important role in the adult central nervous system. We previously identified the WNT pathway as a novel integration site of the adipokine leptin in mediating its neuroendocrine control of metabolism in obese mice. Here we investigated the implication of WNT signaling in seasonal body weight regulation exhibited by the Djungarian hamster (Phodopus sungorus), a seasonal mammal that exhibits profound annual changes in leptin sensitivity. We furthermore investigated whether crucial components of the WNT pathway are regulated in a diurnal manner. Gene expression of key components of the WNT pathway in the hypothalamus of hamsters acclimated to either long day (LD) or short day (SD) photoperiod was analyzed by in situ hybridization. We detected elevated expression of the genes WNT-4, Axin-2, Cyclin-D1, and SFRP-2, in the hypothalamic arcuate nucleus, a key energy balance integration site, during LD compared with SD as well as a diurnal regulation of Axin-2, Cyclin-D1, and DKK-3. Investigating the effect of photoperiod as well as leptin on the activation (phosphorylation) of the WNT coreceptor LRP-6-(Ser1490) by immunohistochemistry, we found elevated activity in the arcuate nucleus during LD relative to SD as well as after leptin treatment (2 mg/kg body weight). These findings indicate that differential WNT signaling may be associated with seasonal body weight regulation and is partially regulated in a diurnal manner in the adult brain. Furthermore, they suggest that this pathway plays a key role in the neuroendocrine regulation of body weight and integration of the leptin signal.

Page generated in 0.1013 seconds