• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes stochastiques en dynamique moléculaire / Stochastic methods in molecular dynamic

Perrin, Nicolas 20 March 2013 (has links)
Cette thèse présente deux sujets de recherche indépendants concernant l'application de méthodes stochastiques à des problèmes issus de la dynamique moléculaire. Dans la première partie, nous présentons des travaux liés à l'interprétation probabiliste de l'équation de Poisson-Boltzmann qui intervient dans la description du potentiel électrostatique d'un système moléculaire. Après avoir introduit l'équation de Poisson-Boltzmann et les principaux outils mathématiques utilisés, nous nous intéressons à l'équation linéaire parabolique de Poisson-Boltzmann. Avant d’énoncer le résultat principal de la thèse, nous étendons des résultats d'existence et unicité des équations différentielles stochastiques rétrogrades. Nous donnons ensuite une interprétation probabiliste de l'équation non-linéaire de Poisson-Boltzmann sous la forme de la solution d'une équation différentielle stochastique rétrograde. Enfin, dans une seconde partie prospective, nous commençons l'étude d'une méthode proposée par Paul Malliavin de détection des variables lentes et rapides d'une dynamique moléculaire. / This thesis presents two independent research topics. Both are related to the application of stochastic problems to molecular dynamics. In the first part, we present a work related to the probabilistic interpretation of the Poisson-Boltzmann equation. This equation describes the electrostatic potential of a molecular system. After an introduction to the Poisson-Boltzmann equation, we focus on the parabolic and linear equation. After extending an existence and uniqueness result for backward stochastic differential equations, we establish a probabilistic interpretation of the nonlinear Poisson-Boltzmann equation with backward stochastic differential equations. Finally, in a more prospective second part, we initiate a study of a slow and fast variables detection method due to Paul Malliavin.

Page generated in 0.0995 seconds