• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem numérica conjunta de processos sedimentares e tectônicos em bacias sedimentares / Joint numerical modeling of sedimentary and tectonic processes in sedimentary basins

Sacek, Victor 27 June 2011 (has links)
O principal objetivo deste trabalho é prever a evolução de margens divergentes desde o início da extensão litosférica, levando-se em consideração a interação entre processos superficiais e tectônicos. Para isto, foi desenvolvido um modelo numérico que acopla isostasia flexural, efeitos térmicos, estiramento litosférico e processos superficiais. A isostasia flexural é simulada através de uma placa elástica fina sobre um fluido invíscido, representando o comportamento flexural da litosfera flutuando sobre a astenosfera. Durante a simulação, a estrutura térmica da litosfera evolui como um resultado da advecção e difusão do calor no interior da Terra. Considera-se que o estiramento da litosfera é acomodado por falhas planas na crosta superior e deformação dúctil na crosta inferior e manto. O modelo de processos superficiais descreve como a paisagem é erodida e como os sedimentos são transportados e depositados nas bacias sedimentares. Através desse modelo numérico, é mostrado que o estiramento litosférico tem uma profunda influência na evolução da migração de escarpas em margens divergentes. Os resultados sugerem que escarpas limitadas por falhas criadas em flancos de rifts por descarregamento mecânico e resposta flexural têm pouca chance de \"sobreviver\" através de recuo erosivo se a crosta inferior sob o flanco do rift foi substancialmente estirada. Nessa configuração, o divisor de drenagem que persiste através do tempo é criado em direção ao continente em uma posição que depende da rigidez flexural da crosta superior. Esse cenário ocorre quando a topografia pré-rift mergulha para o continente, caso contrário a evolução da escarpa é guiada pelo divisor de águas interior pré-existente. Esses conceitos são aplicados no estudo das margens do sudeste da Australia e do sudeste do Brasil, onde o cenário de retração de escarpas através de recuo erosivo mostrou-se improvável. O mesmo modelo numérico foi utilizado para estudar como a passagem de uma anomalia térmica sob a litosfera pode afetar a evolução pós-rift de bacias sedimentares em margens divergentes. Os resultados numéricos mostram que a velocidade da litosfera em relação à anomalia térmica e a rigidez flexural da litosfera oceânica e continental afetam a evolução de bacias sedimentares devido ao soerguimento da superfície relacionado com a expansão térmica da litosfera. Como exemplo, é estudada a possível influência de uma anomalia térmica (Pluma de Trindade?) na evolução das bacias de Campos e Espírito Santo, na margem sudeste brasileira. / The purpose of this work is to predict the evolution of divergent margins since the onset of lithospheric extension, taking into account the interaction between surface and tectonic processes. For this, a numerical model was developed to study the coupling of flexural isostasy, thermal effects, stretching of the lithosphere and surface processes. The flexural isostasy is simulated through a thin elastic plate overlying an inviscid fluid, representing the flexural behavior of the lithosphere floating on the asthenosphere. During the simulation, the thermal structure of the lithosphere evolves as a result of advection and diffusion of heat in the Earths interior. The stretching of the lithosphere is assumed to be accommodated by planar faults in the upper crust and ductile flow in the lower crust and mantle. The surface processes model describes how the landscape is eroded and how the sediments are transported and deposited in the sedimentary basins. The results from this numerical model show that the amount of lithospheric stretching has a profound influence on the evolution of escarpment migration in divergent margins. These results suggest that fault-bounded escarpments created at rift flanks by mechanical unloading and flexural rebound have little potential to survive as retreating escarpments if the lower crust under the rift flank is substantially stretched. In this configuration, a drainage divide that persists through time is created landward in a position that depends on the flexural rigidity of the upper crust. This scenario occurs when the pre-rift topography dips landward, otherwise the evolution of the escarpment is guided by the pre-existing inland drainage divide. These concepts are applied to study the margins of Southeastern Australia and Southeastern Brazil, where the retreating escarpment scenario showed to be unlikely. The same numerical model is used to study how the passage of a thermal anomaly under the lithosphere can affect the post-rift evolution of sedimentary basins in divergent margins. The numerical results show that the velocity of the lithosphere relative to the thermal anomaly and the flexural rigidity of the continental and oceanic lithospheres affect the evolution of sedimentary basins due to surface uplift related to thermal expansion of the lithosphere. As an example, the model is applied to assess the possible influence of a thermal anomaly (Trindade Plume?) on the evolution of the Campos and Esp rito Santo Basins, in Southeastern Brazilian margin.
2

Modelagem numérica da dinâmica do manto na borda da litosfera continental em margens divergentes / Numerical modeling of mantle dynamics on the edge of the continental lithosphere in divergent margins

Santos, Edgar Bueno dos 19 September 2016 (has links)
O presente trabalho tem como objetivo estudar a dinâmica do manto superior em margens continentais através do uso de modelos numéricos que simulam processos convectivos e condutivos no tempo geológico, avaliando-se como a incorporação da convecçãao no estudo da história de subsidência de margens continentais difere do resultado obtido através de modelos puramente condutivos. Como primeiros testes, foram realizadas comparações dos resultados numéricos com soluções analíticas para diferentes valores do número de Rayleigh, verificando-se a validade das soluções computacionais. Também foi feita uma análise da estabilidade da litosfera no tempo geológico para diferentes perfis de viscosidade, servindo como base para a escolha dos parâmetros reológicos do manto para os modelos no contexto de margens divergentes. A partir dos cenários numéricos que melhor reproduziram a estrutura da litosfera terrestre, novos cenários foram criados para simular a evolução térmica e isostática de margens continentais. Como exemplo, utilizou-se dados geofísicos e geológicos extraídos da literatura para a bacia sedimentar do Golfo do Leão, no sudeste da Françaa, com o objetivo de comparar a evolução geodinâmica do presente modelo numérico com outros modelos publicados na literatura. Observou-se que o efeito convectivo astenosférico preserva a estrutura térmica aquecida da margem estirada por mais tempo em comparação com o modelo puramente condutivo. Isso implica que, possivelmente, outros fatores também devem ser levados em consideração como o efeito da geometria tridimensional da margem do Golfo do Leão que pode contribuir para um aumento da subsidência da margem em relação ao modelo obtido no presente trabalho. Adicionalmente, constatou-se que a convecção mantélica pode induzir tensões na base da litosfera que a deslocam dinamicamente ao longo do tempo geológico, podendo influenciar a evolução estratigráfica das bacias sedimentares marginais. São apresentados cerca de 60 cenários geodinâmicos mostrando como a variação da estrutura reológica do manto influencia a evolução térmica da litosfera e consequentemente, a história de subsidência da margem. / This work aims to study the dynamics of the upper mantle in continental margins by using numerical models that simulate convective and conductive processes in geological time scale. It was evaluated the contribution of convection and conduction for subsidence history of sedimentary basins. As first tests, simple numerical scenarios with different Rayleigh number were compared with analytic solutions, verifying the validate of the computational solutions. These numerical experiments were followed by the analysis of the lithospheric stability in the geological time scale for different values of viscosity. These experiments were used as a base for the choice of the rheological parameters of the mantle for the models in the context of divergent margins. From the numerical scenarios that better reproduced the lithospheric structure of the Earth, new scenarios were created to simulate the thermal and isostatic evolution of continental margins. As an example, geophysical and geological data extracted from the literature for the sedimentary basin of the Gulf of Lion, Southeastern France, were compared with the results of different geodynamic models published in the literature and with the numerical scenarios obtained in the present work. We observed that the effect of the astenospheric convection preserves the thermal structure of the stretched margin for a long time in comparison with purely conductive models. This implies that, possibly, other processes must be taken into account, such as the effect of the three-dimensional geometry of the Gulf of Lion margin that may contribute to a higher subsidence of the margin than the one obtained in the present work. Additionally, it was observed that mantle convection may induce stress at the base of the lithosphere that dynamically moves it in the geological time, and may influence the stratigraphic evolution of sedimentary basins. It is presented about 60 scenarios showing how the variation of the rheological structure of the mantle is taken into account in the thermal evolution of the lithosphere and consequently in the subsidence history of the margin.
3

Modelagem numérica da dinâmica do manto na borda da litosfera continental em margens divergentes / Numerical modeling of mantle dynamics on the edge of the continental lithosphere in divergent margins

Edgar Bueno dos Santos 19 September 2016 (has links)
O presente trabalho tem como objetivo estudar a dinâmica do manto superior em margens continentais através do uso de modelos numéricos que simulam processos convectivos e condutivos no tempo geológico, avaliando-se como a incorporação da convecçãao no estudo da história de subsidência de margens continentais difere do resultado obtido através de modelos puramente condutivos. Como primeiros testes, foram realizadas comparações dos resultados numéricos com soluções analíticas para diferentes valores do número de Rayleigh, verificando-se a validade das soluções computacionais. Também foi feita uma análise da estabilidade da litosfera no tempo geológico para diferentes perfis de viscosidade, servindo como base para a escolha dos parâmetros reológicos do manto para os modelos no contexto de margens divergentes. A partir dos cenários numéricos que melhor reproduziram a estrutura da litosfera terrestre, novos cenários foram criados para simular a evolução térmica e isostática de margens continentais. Como exemplo, utilizou-se dados geofísicos e geológicos extraídos da literatura para a bacia sedimentar do Golfo do Leão, no sudeste da Françaa, com o objetivo de comparar a evolução geodinâmica do presente modelo numérico com outros modelos publicados na literatura. Observou-se que o efeito convectivo astenosférico preserva a estrutura térmica aquecida da margem estirada por mais tempo em comparação com o modelo puramente condutivo. Isso implica que, possivelmente, outros fatores também devem ser levados em consideração como o efeito da geometria tridimensional da margem do Golfo do Leão que pode contribuir para um aumento da subsidência da margem em relação ao modelo obtido no presente trabalho. Adicionalmente, constatou-se que a convecção mantélica pode induzir tensões na base da litosfera que a deslocam dinamicamente ao longo do tempo geológico, podendo influenciar a evolução estratigráfica das bacias sedimentares marginais. São apresentados cerca de 60 cenários geodinâmicos mostrando como a variação da estrutura reológica do manto influencia a evolução térmica da litosfera e consequentemente, a história de subsidência da margem. / This work aims to study the dynamics of the upper mantle in continental margins by using numerical models that simulate convective and conductive processes in geological time scale. It was evaluated the contribution of convection and conduction for subsidence history of sedimentary basins. As first tests, simple numerical scenarios with different Rayleigh number were compared with analytic solutions, verifying the validate of the computational solutions. These numerical experiments were followed by the analysis of the lithospheric stability in the geological time scale for different values of viscosity. These experiments were used as a base for the choice of the rheological parameters of the mantle for the models in the context of divergent margins. From the numerical scenarios that better reproduced the lithospheric structure of the Earth, new scenarios were created to simulate the thermal and isostatic evolution of continental margins. As an example, geophysical and geological data extracted from the literature for the sedimentary basin of the Gulf of Lion, Southeastern France, were compared with the results of different geodynamic models published in the literature and with the numerical scenarios obtained in the present work. We observed that the effect of the astenospheric convection preserves the thermal structure of the stretched margin for a long time in comparison with purely conductive models. This implies that, possibly, other processes must be taken into account, such as the effect of the three-dimensional geometry of the Gulf of Lion margin that may contribute to a higher subsidence of the margin than the one obtained in the present work. Additionally, it was observed that mantle convection may induce stress at the base of the lithosphere that dynamically moves it in the geological time, and may influence the stratigraphic evolution of sedimentary basins. It is presented about 60 scenarios showing how the variation of the rheological structure of the mantle is taken into account in the thermal evolution of the lithosphere and consequently in the subsidence history of the margin.
4

Modelagem numérica conjunta de processos sedimentares e tectônicos em bacias sedimentares / Joint numerical modeling of sedimentary and tectonic processes in sedimentary basins

Victor Sacek 27 June 2011 (has links)
O principal objetivo deste trabalho é prever a evolução de margens divergentes desde o início da extensão litosférica, levando-se em consideração a interação entre processos superficiais e tectônicos. Para isto, foi desenvolvido um modelo numérico que acopla isostasia flexural, efeitos térmicos, estiramento litosférico e processos superficiais. A isostasia flexural é simulada através de uma placa elástica fina sobre um fluido invíscido, representando o comportamento flexural da litosfera flutuando sobre a astenosfera. Durante a simulação, a estrutura térmica da litosfera evolui como um resultado da advecção e difusão do calor no interior da Terra. Considera-se que o estiramento da litosfera é acomodado por falhas planas na crosta superior e deformação dúctil na crosta inferior e manto. O modelo de processos superficiais descreve como a paisagem é erodida e como os sedimentos são transportados e depositados nas bacias sedimentares. Através desse modelo numérico, é mostrado que o estiramento litosférico tem uma profunda influência na evolução da migração de escarpas em margens divergentes. Os resultados sugerem que escarpas limitadas por falhas criadas em flancos de rifts por descarregamento mecânico e resposta flexural têm pouca chance de \"sobreviver\" através de recuo erosivo se a crosta inferior sob o flanco do rift foi substancialmente estirada. Nessa configuração, o divisor de drenagem que persiste através do tempo é criado em direção ao continente em uma posição que depende da rigidez flexural da crosta superior. Esse cenário ocorre quando a topografia pré-rift mergulha para o continente, caso contrário a evolução da escarpa é guiada pelo divisor de águas interior pré-existente. Esses conceitos são aplicados no estudo das margens do sudeste da Australia e do sudeste do Brasil, onde o cenário de retração de escarpas através de recuo erosivo mostrou-se improvável. O mesmo modelo numérico foi utilizado para estudar como a passagem de uma anomalia térmica sob a litosfera pode afetar a evolução pós-rift de bacias sedimentares em margens divergentes. Os resultados numéricos mostram que a velocidade da litosfera em relação à anomalia térmica e a rigidez flexural da litosfera oceânica e continental afetam a evolução de bacias sedimentares devido ao soerguimento da superfície relacionado com a expansão térmica da litosfera. Como exemplo, é estudada a possível influência de uma anomalia térmica (Pluma de Trindade?) na evolução das bacias de Campos e Espírito Santo, na margem sudeste brasileira. / The purpose of this work is to predict the evolution of divergent margins since the onset of lithospheric extension, taking into account the interaction between surface and tectonic processes. For this, a numerical model was developed to study the coupling of flexural isostasy, thermal effects, stretching of the lithosphere and surface processes. The flexural isostasy is simulated through a thin elastic plate overlying an inviscid fluid, representing the flexural behavior of the lithosphere floating on the asthenosphere. During the simulation, the thermal structure of the lithosphere evolves as a result of advection and diffusion of heat in the Earths interior. The stretching of the lithosphere is assumed to be accommodated by planar faults in the upper crust and ductile flow in the lower crust and mantle. The surface processes model describes how the landscape is eroded and how the sediments are transported and deposited in the sedimentary basins. The results from this numerical model show that the amount of lithospheric stretching has a profound influence on the evolution of escarpment migration in divergent margins. These results suggest that fault-bounded escarpments created at rift flanks by mechanical unloading and flexural rebound have little potential to survive as retreating escarpments if the lower crust under the rift flank is substantially stretched. In this configuration, a drainage divide that persists through time is created landward in a position that depends on the flexural rigidity of the upper crust. This scenario occurs when the pre-rift topography dips landward, otherwise the evolution of the escarpment is guided by the pre-existing inland drainage divide. These concepts are applied to study the margins of Southeastern Australia and Southeastern Brazil, where the retreating escarpment scenario showed to be unlikely. The same numerical model is used to study how the passage of a thermal anomaly under the lithosphere can affect the post-rift evolution of sedimentary basins in divergent margins. The numerical results show that the velocity of the lithosphere relative to the thermal anomaly and the flexural rigidity of the continental and oceanic lithospheres affect the evolution of sedimentary basins due to surface uplift related to thermal expansion of the lithosphere. As an example, the model is applied to assess the possible influence of a thermal anomaly (Trindade Plume?) on the evolution of the Campos and Esp rito Santo Basins, in Southeastern Brazilian margin.

Page generated in 0.0826 seconds