• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Testing the functional equivalence of the mammalian Dlx5 and Dlx6 proteins

Quach, Anna 11 January 2013 (has links)
The Distal-less (Dll) gene has an ancient evolutionary origin. Chordates have retained duplicated Dll genes; vertebrates have six distinct paralogues (Dlx1 through Dlx6 in mammals) arranged in three cis-linked pairs that are co-expressed. Dlx genes are expressed in a conserved nested pattern that defines a proximal-distal axis in the pharyngeal arch tissue of vertebrates. Dlx5-/- and Dlx6-/- mouse neonates have similar phenotypic variations in the lower jaw and inner ear bones, with the Dlx6-/- phenotype being a less perturbed version of the Dlx5-/- phenotype. Conversely, Dlx5/6-/- double mutants have a homeotic transformation of the lower jaw into a second set of maxillary structures. The combination of expression patterns and null phenotypes has led to the proposal of a “Dlx code” that patterns the craniofacial tissue. However, the nature of this code, whether individual Dlx transcription factors supply unique functions, or whether they make a quantitative contribution to a more generic and shared Dlx function, is not well understood. One prediction of a quantitative model for Dlx function in the pharyngeal arches is the functional equivalency of the proteins encoded by divergent cis-linked Dlx paralogues. To address this aspect of the model, three core functions of Dlx5 and Dlx6 were compared quantitatively: suppression of cell growth, transcription activity and DNA binding affinity. In most respects both proteins behaved very similarly.

Page generated in 0.063 seconds