Spelling suggestions: "subject:"nna depair"" "subject:"nna pepair""
151 |
Mechanisms Of Genome Stability In The Hyperthermophilic Archaeon Sulfolobus acidocaldariusSakofsky, Cynthia J. January 2011 (has links)
No description available.
|
152 |
VISUALIZING GENOMIC INSTABILITY: <i>IN SITU</i> DETECTION AND QUANTIFICATION OF MUTATION IN MICEHersh, Megan N. 11 October 2001 (has links)
No description available.
|
153 |
CHARACTERIZATION OF THE OLIGOMERIZATION OF THE HUMAN XRCC4 DNA REPAIR PROTEIN: IMPLICATIONS TO NON-HOMOLOGOUS END JOININGLee, KY Wilson 10 1900 (has links)
<p>If not efficiently repaired, DNA double-stranded breaks can result in cell death. A major contributor to the repair of this DNA damage is the non-homologous end joining pathway (NHEJ) which depends on the proteins: X-ray cross complementing protein 4 (XRCC4) and XLF. These proteins form a complex that can bridge DNA substrates <em>in vitro. </em>Analysis of these proteins has demonstrated that the C-terminal region of XRCC4 is necessary for this bridging function. However, this region is also critical for both tetramerization and DNA binding abilities of XRCC4, making the interpretation of XRCC4's role in the DNA-bridging unclear. Here, we intend to further characterize the tetramerization of XRCC4 and find a functionally independent mutant. Our studies suggest that regions in the N-terminus of XRCC4 may be important for the tetramerization of the protein but not for its DNA binding ability. These mutants were also analyzed by circular dichroism and mobility shift assays to verify for the integrity of their secondary structure composition and show that they are able to interact with its known binding partner, DNA Ligase IV. Additionally, we have shown that the XRCC4:XLF complex as well as XLF alone are able to interact with DNA substrates as short as 36 base pairs. Taking the data together, we expect to be able to construct a structural model for the XRCC4:XLF complex with DNA and obtain a better understanding on the role of XRCC4’s tetramerization in the NHEJ pathway. As deficiency of XRCC4 has been implicated with tumourigenesis and immunodeficiency, understanding its role will be helpful for the development of treatments for such complications.</p> / Master of Science (MSc)
|
154 |
Characterization of DNA-repair potential in deep subsurface bacteria challenged by UV light, hydrogen peroxide, and gamma radiationArrage, Andrew Anthony 18 August 2009 (has links)
Subsurface bacterial isolates obtained through the DOE Subsurface Science Program were tested for resistance to UV light, gamma radiation and H₂0₂. Some deep subsurface bacteria were resistant to UV light, demonstrating ≥1.0% survival at fluences which resulted in a 0.0001% survival level of E. coli B. The percentage of UV resistant aerobic subsurface bacteria and surface soil bacteria were similar; 30.8% and 25.8% respectively. All of the microaerophilic subsurface isolates were UV sensitive as defined in this work; however, subsurface isolates demonstrated UV resistance levels similar to reference bacterial strains of the same Gram reaction. These results were not in agreement with the hypothesis that the resistance of an organism to UV is correlated with the amount of solar radiation in its natural habitat. Evidence for photoreactivation and the presence of an SOS-like mechanism was also detected in subsurface bacteria. The presence of UV resistance and photoreactivation in subsurface bacteria that have been shielded from solar radiation for millions of years may point to a limited rate of evolution in the deep subsurface environment. In subsurface bacteria, there was a relatedness between UV resistance and resistance to gamma radiation and H₂0₂ UV-resistant aerobic subsurface isolates were also gamma and H₂0₂- resistant compared to the microaerophilic isolates tested. Due to the similarities of bacterial responses to UV, H₂0₂ , and gamma radiation, either UV or H₂0₂ may be utilized to model the effects of ionizing radiation on bacterial cultures used for the bioremediation of organic and radioactive waste-containing environments. / Master of Science
|
155 |
Oxidative DNA damage and repair at non-coding regulatory regionsEl-Khamisy, Sherif 01 November 2023 (has links)
Yes / DNA breaks at protein-coding sequences are well-established threats to tissue homeostasis and maintenance. They arise from the exposure to intracellular and environmental genotoxins, causing damage in one or two strands of the DNA. DNA breaks have been also reported in non-coding regulatory regions such as enhancers and promoters. They arise from essential cellular processes required for gene transcription, cell identity and function. One such process that has attracted recent attention is the oxidative demethylation of DNA and histones, which generates abasic sites and DNA single-strand breaks. Here, we discuss how oxidative DNA breaks at non-coding regulatory regions are generated and the recently reported role of NuMA (nuclear mitotic apparatus) protein in promoting transcription and repair at these regions.
|
156 |
Splitting, joining and cutting : mechanistic studies of enzymes that manipulate DNAMcRobbie, Anne-Marie M. January 2010 (has links)
DNA is a reactive and dynamic molecule that is continually damaged by both exogenous and endogenous agents. Various DNA repair pathways have evolved to ensure the faithful replication of the genome. One such pathway, nucleotide excision repair (NER), involves the concerted action of several proteins to repair helix-distorting lesions that arise following exposure to UV light. Mutation of NER proteins is associated with several genetic diseases, including xeroderma pigmentosum that can arise upon mutation of the DNA helicase, XPD. The consequences of introducing human mutations into the gene encoding XPD from Sulfolobus acidocaldarius (SacXPD) were investigated to shed light on the molecular basis of XPD-related diseases. XPD is a 5’-3’ DNA helicase that requires an iron-sulphur (FeS) cluster for activity (Rudolf et al., 2006). Several proteins related to SacXPD, including human XPD, human FancJ and E. coli DinG, also rely on an FeS cluster for DNA unwinding (Rudolf et al., 2006; Pugh et al., 2008; Ren et al., 2009). Sequence analysis of the homologous protein, DinG, from Staphylococcus aureus (SarDinG) suggests that this protein does not encode a FeS cluster. In addition, SarDinG comprises an N-terminal extension with homology to the epsilon domain of polymerase III from E. coli. This thesis describes the purification and characterisation of SarDinG. During replication, DNA lesions or other ‘roadblocks’, such as DNA-bound proteins, can lead to replication fork stalling or collapse. To maintain genomic integrity, the fork must be restored and replication restarted. In archaea, the DNA helicase Hel308 is thought to play a role in this process by removing the lagging strands of stalled forks, thereby promoting fork repair by homologous recombination. Potential roles of Hel308 during replication fork repair are discussed in this thesis. The mechanism by which Hel308 moves along and unwinds DNA was also investigated using a combined structural and biophysical approach. The exchange of DNA between homologous strands, catalysed by a RecA family protein (RecA in bacteria, RAD51 in eukaryotes, and RadA in archaea), defines homologous recombination. While bacteria encode a single RecA protein, both eukaryotes and archaea encode multiple paralogues that have implications in the regulation of RAD51 and RadA activity, respectively. This thesis describes the purification and characterisation of one of the RadA paralogues (Sso2452) in archaea.
|
157 |
Role of TRM2RNC1 endo-exonuclease in DNA double strand break repairChoudhury, Sibgat Ahmed. January 2007 (has links)
DNA double strand breaks (DSB) are the most toxic of all types of DNA lesions. In Saccharomyces cerevisiae, DNA DSBs are predominantly repaired by the homologous recombination repair (HRR) pathway. The initial step of HRR requires extensive processing of DNA ends from the 5' to 3' direction by specific endo-exonuclease(s) (EE) at the DSB sites, but no endo-exonuclease(s) has yet been conclusively determined for such processing of DSBs. S. cerevisiae TRM2/RNC1 is a candidate endo-exonuclease that was previously implicated for its role in the HRR pathway and was also shown to have methyl transferase activity primarily located at its c-terminus. / In this dissertation, we provided compelling biochemical and genetic evidence that linked TRM2/RNC1 to the DNA end processing role in HRR. Trm2/Rnc1p purified with a small calmodulin binding peptide (CBP) tag displayed single strand (ss) specific endonuclease and double strand (ds) specific 5' to 3' exonuclease activity characteristic of endo-exonucleases involved in HRR. Intriguingly, purified Trm2/Rnc1p deleted for its C-terminal methyl transferase domain retained its nuclease activity but not the methyl transferase activity indicating that the C-terminal part responsible for its methyl transferase function is not required for its nuclease activity. / Our genetic and functional studies with S. cerevisiae trm2/rnc1 single mutants alone or in combination with other DNA DSB repair mutants after treatment with the DNA damaging drug methyl methane sulfonate (MMS) or IR that is believed to produce DSBs, or with specific induction of DNA DSBs at the MAT locus by HO-endonuclease demonstrated an epistatic relationship of TRM2/RNC1 with the major recombination factor RAD52. These studies suggested that TRM2/RNC1 probably acts at an earlier step than RAD52 in the HRR pathway. The genetic evidence also indicated a possible functional redundancy with the bona fide endo-exonuclease EXO1 in the processing of DNA ends at the DSB sites. / In a recent report, the immuno-purified mouse homologue of TRM2/RNC1 exhibited similar enzymatic properties as the endo-exonucleases involved in HRR. A small molecular inhibitor pentamidine specifically inhibited the nuclease activity of the mouse EE and sensitized various cancer cells to DNA damaging agents commonly used in cancer chemotherapy. We specifically suppressed expression of the mouse EE using small interfering RNA (siRNA) that conferred sensitivity of B16F10 melanoma cells to a variety of DNA damaging drugs often used in cancer treatment. This further validated our earlier claim of the endo-exonuclease as a potential therapeutic target in treating cancer.
|
158 |
DNA mismatch repair and hypermutability in the physiology and pathogenesis of Haemophilus influenzaeWatson, Michael E., January 2004 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 156-180). Also issued on the Internet.
|
159 |
DNA damage response activated by anti-cancer agent, irofulvenWiltshire, Timothy D. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains ix, 227 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
160 |
Role of TRM2RNC1 endo-exonuclease in DNA double strand break repairChoudhury, Sibgat Ahmed. January 2007 (has links)
No description available.
|
Page generated in 0.0553 seconds