• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 9
  • 7
  • 2
  • Tagged with
  • 103
  • 103
  • 76
  • 43
  • 40
  • 38
  • 28
  • 27
  • 22
  • 22
  • 20
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Génération de données synthétiques pour l'adaptation hors-domaine non-supervisée en réponse aux questions : méthodes basées sur des règles contre réseaux de neurones

Duran, Juan Felipe 02 1900 (has links)
Les modèles de réponse aux questions ont montré des résultats impressionnants sur plusieurs ensembles de données et tâches de réponse aux questions. Cependant, lorsqu'ils sont testés sur des ensembles de données hors domaine, la performance diminue. Afin de contourner l'annotation manuelle des données d'entraînement du nouveau domaine, des paires de questions-réponses peuvent être générées synthétiquement à partir de données non annotées. Dans ce travail, nous nous intéressons à la génération de données synthétiques et nous testons différentes méthodes de traitement du langage naturel pour les deux étapes de création d'ensembles de données : génération de questions et génération de réponses. Nous utilisons les ensembles de données générés pour entraîner les modèles UnifiedQA et Bert-QA et nous les testons sur SCIQ, un ensemble de données hors domaine sur la physique, la chimie et la biologie pour la tâche de question-réponse à choix multiples, ainsi que sur HotpotQA, TriviaQA, NatQ et SearchQA, quatre ensembles de données hors domaine pour la tâche de question-réponse. Cette procédure nous permet d'évaluer et de comparer les méthodes basées sur des règles avec les méthodes de réseaux neuronaux. Nous montrons que les méthodes basées sur des règles produisent des résultats supérieurs pour la tâche de question-réponse à choix multiple, mais que les méthodes de réseaux neuronaux produisent généralement des meilleurs résultats pour la tâche de question-réponse. Par contre, nous observons aussi qu'occasionnellement, les méthodes basées sur des règles peuvent compléter les méthodes de réseaux neuronaux et produire des résultats compétitifs lorsqu'on entraîne Bert-QA avec les bases de données synthétiques provenant des deux méthodes. / Question Answering models have shown impressive results in several question answering datasets and tasks. However, when tested on out-of-domain datasets, the performance decreases. In order to circumvent manually annotating training data from the new domain, question-answer pairs can be generated synthetically from unnanotated data. In this work, we are interested in the generation of synthetic data and we test different Natural Language Processing methods for the two steps of dataset creation: question/answer generation. We use the generated datasets to train QA models UnifiedQA and Bert-QA and we test it on SCIQ, an out-of-domain dataset about physics, chemistry, and biology for MCQA, and on HotpotQA, TriviaQA, NatQ and SearchQA, four out-of-domain datasets for QA. This procedure allows us to evaluate and compare rule-based methods with neural network methods. We show that rule-based methods yield superior results for the multiple-choice question-answering task, but neural network methods generally produce better results for the question-answering task. However, we also observe that occasionally, rule-based methods can complement neural network methods and produce competitive results when training Bert-QA with synthetic databases derived from both methods.
102

Domain adaptation in reinforcement learning via causal representation learning

Côté-Turcotte, Léa 07 1900 (has links)
Les progrès récents en apprentissage par renforcement ont été substantiels, mais ils dépendent souvent de l'accès à l'état. Un état est un ensemble d'informations qui fournit une description concise et complète de l'environnement, englobant tous les détails pertinents nécessaires pour que l'agent puisse prendre des décisions éclairées. Cependant, de telles données détaillées sont rarement disponibles dans les situations réelles. Les images offrent une forme de données plus réaliste et accessible, mais leur complexité pose d'importants défis dans le développement de politiques robustes et efficaces. Les méthodes d'apprentissage de représentation se sont révélées prometteuses pour améliorer l'efficacité des politiques basées sur les données de pixels. Néanmoins, les politiques peinent toujours à généraliser à de nouveaux domaines, rendant l'application de l'apprentissage par renforcement basé sur les pixels impraticable pour des scénarios du monde réel. Cela souligne le besoin urgent de s'attaquer à l'adaptation de domaine dans l'apprentissage par renforcement basé sur les pixels. Cette thèse examine le potentiel de l'apprentissage de représentation causale pour améliorer l'adaptation de domaine dans l'apprentissage par renforcement. L'idée sous-jacente est que pour que les agents s'adaptent efficacement à de nouveaux domaines, ils doivent être capables d'extraire des informations de haut niveau à partir de données brutes et de comprendre les dynamiques causales qui régulent l'environnement. Pour étudier cela, nous évaluons quatre algorithmes distincts d'apprentissage de représentation causale, chacun conçu pour capturer un niveau de structure plus détaillé dans l'espace latent, évaluant leur impact sur la performance d'adaptation de domaine. Le processus implique d'abord d'apprendre une représentation causale puis de former l'agent d'apprentissage par renforcement sur cette représentation. La performance d'adaptation de domaine de ces agents est évaluée dans deux environnements de conduite autonome : CarRacing et CARLA. Nos résultats soutiennent que l'apprentissage d'une représentation latente améliore nettement l'efficacité et la robustesse dans l'apprentissage par renforcement basé sur les pixels. De plus, ils indiquent qu'apprendre une structure causale dans l'espace latent contribue à une meilleure performance d'adaptation de domaine. Cependant, la promesse de la représentation causale pour améliorer l'adaptation de domaine est tempérée par leurs demandes computationnelles substantielles. De plus, lorsque des observations de plusieurs domaines sont disponibles, cette approche ne dépasse pas l'efficacité des méthodes plus simples. Nous avons également trouvé que les agents entraînés sur des représentations qui conservent toutes les informations de l'espace latent ont tendance à surpasser les autres, suggérant que les représentations dissociées sont préférables aux représentations invariantes. / Recent advancements in reinforcement learning have been substantial, but they often depend on access to the state. A state is a set of information that provides a concise and complete description of the environment, encompassing all relevant details necessary for the agent to make informed decisions. However, such detailed data is rarely available in real-world settings. Images present a more realistic and accessible data form, but their complexity introduces considerable challenges in developing robust and efficient policies. Representation learning methods have shown promise in enhancing the efficiency of policies based on pixel data. Nonetheless, policies continue to struggle to generalize to new domains, making the application of pixel-based reinforcement learning impractical for real-world scenarios. This highlights the urgent need to address domain adaptation in pixel-based reinforcement learning. This thesis investigates the potential of causal representation learning in improving domain adaptation in reinforcement learning. The underlying premise is that for reinforcement learning agents to adapt to new domains effectively, they must be able to extract high-level information from raw data and comprehend the causal dynamics that regulate the environment. We evaluate four distinct causal representation learning algorithms, each aimed at uncovering a more intricate level of structure within the latent space, to assess their impact on domain adaptation performance. This involves first learning a causal representation, followed by training the reinforcement learning agent on this representation. The domain adaptation performance of these agents is evaluated within two autonomous driving environments: CarRacing and CARLA. Our results support that learning a latent representation enhances efficiency and robustness in pixel-based RL. Moreover, it indicates that understanding complex causal structures in the latent space leads to improved domain adaptation performance. However, the promise of advanced causal representation in augmenting domain adaptation is tempered by its substantial computational demands. Additionally, when observations from multiple domains are available, this approach does not exceed the effectiveness of simpler methods. We also found that agents trained on representations that retain all information tend to outperform others, suggesting that disentangled representations are preferable to invariant representations.
103

Improving Deep Learning-based Object Detection Algorithms for Omnidirectional Images by Simulated Data

Scheck, Tobias 08 August 2024 (has links)
Perception, primarily through vision, is a vital human ability that informs decision-making and interactions with the world. Computer Vision, the field dedicated to emulating this human capability in computers, has witnessed transformative progress with the advent of artificial intelligence, particularly neural networks and deep learning. These technologies enable automatic feature learning, eliminating the need for laborious hand-crafted features. The increasing global demand for artificial intelligence applications across various industries, however, raises concerns about data privacy and access. This dissertation addresses these challenges by proposing solutions that leverage synthetic data to preserve privacy and enhance the robustness of computer vision algorithms. The primary objective of this dissertation is to reduce the dependence on real data for modern image processing algorithms by utilizing synthetic data generated through computer simulations. Synthetic data serves as a privacy-preserving alternative, enabling the generation of data in scenarios that are difficult or unsafe to replicate in the real world. While purely simulated data falls short of capturing the full complexity of reality, the dissertation explores methods to bridge the gap between synthetic and real data. The dissertation encompasses a comprehensive evaluation of the synthetic THEODORE dataset, focusing on object detection using Convolutional Neural Networks. Fine-tuning CNN architectures with synthetic data demonstrates remarkable performance improvements over relying solely on real-world data. Extending beyond person recognition, these architectures exhibit the ability to recognize various objects in real-world settings. This work also investigates real-time performance and the impact of barrel distortion in omnidirectional images, underlining the potential of using synthetic data. Furthermore, the dissertation introduces two unsupervised domain adaptation methods tailored for anchorless object detection within the CenterNet architecture. The methods effectively reduce the domain gap when synthetic omnidirectional images serve as the source domain, and real images act as the target domain. Qualitative assessments highlight the advantages of these methods in reducing noise and enhancing detection accuracy. The dissertation concludes with creating an application within the Ambient Assisted Living context to realize the concepts. This application encompasses indoor localization heatmaps, human pose estimation, and activity recognition. The methodology leverages synthetically generated data, unique object identifiers, and rotated bounding boxes to enhance tracking in omnidirectional images. Importantly, the system is designed to operate without compromising privacy or using sensitive images, aligning with the growing concerns of data privacy and access in artificial intelligence applications. / Die Wahrnehmung, insbesondere durch das Sehen, ist eine entscheidende menschliche Fähigkeit, die die Entscheidungsfindung und die Interaktion mit der Welt beeinflusst. Die Computer Vision, das Fachgebiet, das sich der Nachahmung dieser menschlichen Fähigkeit in Computern widmet, hat mit dem Aufkommen künstlicher Intelligenz, insbesondere neuronaler Netzwerke und tiefem Lernen, eine transformative Entwicklung erlebt. Diese Technologien ermöglichen das automatische Erlernen von Merkmalen und beseitigen die Notwendigkeit mühsamer, handgefertigter Merkmale. Die steigende weltweite Nachfrage nach Anwendungen künstlicher Intelligenz in verschiedenen Branchen wirft jedoch Bedenken hinsichtlich des Datenschutzes und des Datenzugriffs auf. Diese Dissertation begegnet diesen Herausforderungen, indem sie Lösungen vorschlägt, die auf synthetischen Daten basieren, um die Privatsphäre zu wahren und die Robustheit von Computer-Vision Algorithmen zu steigern. Das Hauptziel dieser Dissertation besteht darin, die Abhängigkeit von realen Daten für moderne Bildverarbeitungsalgorithmen durch die Verwendung von synthetischen Daten zu reduzieren, die durch Computersimulationen generiert werden. Synthetische Daten dienen als datenschutzfreundliche Alternative und ermöglichen die Generierung von Daten in Szenarien, die schwer oder unsicher in der realen Welt nachzustellen sind. Obwohl rein simulierte Daten die volle Komplexität der Realität nicht erfassen, erforscht die Dissertation Methoden zur Überbrückung der Kluft zwischen synthetischen und realen Daten. Die Dissertation umfasst eine Evaluation des synthetischen THEODORE-Datensatzes mit dem Schwerpunkt auf der Objekterkennung mithilfe von Convolutional Neural Networks. Das Feinabstimmen dieser Architekturen mit synthetischen Daten zeigt bemerkenswerte Leistungssteigerungen im Vergleich zur ausschließlichen Verwendung von realen Daten. Über die Erkennung von Personen hinaus zeigen diese Architekturen die Fähigkeit, verschiedene Objekte in realen Umgebungen zu erkennen. Untersucht wird auch die Echtzeit-Performance und der Einfluss der tonnenförmigen Verzerrung in omnidirektionalen Bildern und betont das Potenzial der Verwendung synthetischer Daten. Darüber hinaus führt die Dissertation zwei nicht überwachte Domänenanpassungsmethoden ein, die speziell für die ankerlose Objekterkennung in der CenterNetArchitektur entwickelt wurden. Die Methoden reduzieren effektiv die Domänenlücke, wenn synthetische omnidirektionale Bilder als Quelldomäne und reale Bilder als Zieldomäne dienen. Qualitative Bewertungen heben die Vorteile dieser Methoden bei der Reduzierung von Störungen und der Verbesserung der Erkennungsgenauigkeit hervor. Die Dissertation schließt mit der Entwicklung einer Anwendung im Kontext von Ambient Assisted Living zur Umsetzung der Konzepte. Diese Anwendung umfasst Innenlokalisierungskarten, die Schätzung der menschlichen Körperhaltung und die Erkennung von Aktivitäten. Die Methodologie nutzt synthetisch generierte Daten, eindeutige Objektidentifikatoren und rotierte Begrenzungsrahmen, um die Verfolgung in omnidirektionalen Bildern zu verbessern. Wichtig ist, dass das System entwickelt wurde, um ohne Beeinträchtigung der Privatsphäre oder Verwendung sensibler Bilder zu arbeiten, was den wachsenden Bedenken hinsichtlich des Datenschutzes und des Zugriffs auf Daten in Anwendungen künstlicher Intelligenz entspricht.

Page generated in 0.066 seconds