• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 29
  • 17
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Non-Linear Analysis of Ferroelastic/Ferroelectric Materials

Carka, Dorinamaria 18 February 2013 (has links)
Abstract Ferroelectric/ferroelastic ceramics are used in a range of smart structure applications, such as actuators and sensors due to their electromechanical coupling properties. However, their inherent brittleness makes them susceptible to cracking and understanding their fracture is of prominent importance. A numerical study for a stationary, plane strain crack in a ferroelastic material is performed as part of this work. The stress and strain fields are analyzed using a constitutive law that accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and remanent strain reorientation that can occur in these materials due to the non-proportional loading that arises near a crack tip. The far-field K-loading is applied using a numerical method developed for two-dimensional cracks allowing for the true infinite boundary conditions to be enforced. The J -integral is computed on various integration paths around the tip and the results are discussed in relation to energy release rate results for growing cracks and for stationary cracks in standard elastic–plastic materials. In addition to the fracture studies, we examine the far field electromechanical loading conditions that favor the formation, existence and evolution of stable needle domain array patterns, using a phase-field modeling approach. Such needle arrays are often seen in experimental imaging of ferroelectric single crystals, where periodic arrays of needle-shaped domains of a compatible polarization variant coexist with a homogeneous single domain parent variant. The infinite arrays of needles are modeled via a representative unit cell and the appropriate electrical and mechanical periodic boundary conditions. A theoretical investigation of the generalized loading conditions is carried out to determine the sets of averaged loading states that lead to stationary needle tip locations. The resulting boundary value problems are solved using a non-linear finite element method to determine the details of the needle shape as well as the field distributions around the needle tips. / text
42

Non-Linear Analysis of Ferroelastic/Ferroelectric Materials

Carka, Dorinamaria 18 February 2013 (has links)
Abstract Ferroelectric/ferroelastic ceramics are used in a range of smart structure applications, such as actuators and sensors due to their electromechanical coupling properties. However, their inherent brittleness makes them susceptible to cracking and understanding their fracture is of prominent importance. A numerical study for a stationary, plane strain crack in a ferroelastic material is performed as part of this work. The stress and strain fields are analyzed using a constitutive law that accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and remanent strain reorientation that can occur in these materials due to the non-proportional loading that arises near a crack tip. The far-field K-loading is applied using a numerical method developed for two-dimensional cracks allowing for the true infinite boundary conditions to be enforced. The J -integral is computed on various integration paths around the tip and the results are discussed in relation to energy release rate results for growing cracks and for stationary cracks in standard elastic–plastic materials. In addition to the fracture studies, we examine the far field electromechanical loading conditions that favor the formation, existence and evolution of stable needle domain array patterns, using a phase-field modeling approach. Such needle arrays are often seen in experimental imaging of ferroelectric single crystals, where periodic arrays of needle-shaped domains of a compatible polarization variant coexist with a homogeneous single domain parent variant. The infinite arrays of needles are modeled via a representative unit cell and the appropriate electrical and mechanical periodic boundary conditions. A theoretical investigation of the generalized loading conditions is carried out to determine the sets of averaged loading states that lead to stationary needle tip locations. The resulting boundary value problems are solved using a non-linear finite element method to determine the details of the needle shape as well as the field distributions around the needle tips. / text
43

Tunable Magnetic Properties of Transition Metal Compounds

Felton, Solveig January 2005 (has links)
The magnetic properties of transition metal compounds have been studied using SQUID-magnetometry, magnetic force microscopy and Lorentz transmission electron microscopy. New magnetic materials have been found and their magnetic properties have been determined. How the magnetic properties of a material can be changed through e.g. chemical substitution of magnetic and nonmagnetic atoms and shape and size effects have also been studied. Three different sets of samples have been investigated: three new Mn-compounds, two substitution series of layered magnetic structures and ferromagnetic micronsized thin film elements. The three Mn-compounds, Mn3IrSi, IrMnSi and Mn8Pd15Si7, show different magnetic ordering. Mn3IrSi orders 'antiferromagnetically' at 210 K. IrMnSi forms a double cycloidal spin spiral below 460 K. Mn8Pd15Si7 only shows short-range magnetic ordering. Substituting Se with S in TlCo2Se2-xSx changes the magnetic order from a spin spiral to a colinear ferromagnet for a composition of x=1.75. An intermediate region exists where the compound is neither a pure ferromagnet, nor purely a spin spiral, as evidenced by the magnetization versus field measurements for the x=1.3 and 1.5 samples. This is also seen in the temperature dependent susceptibility measurements. For the TlCu2-xFexSe2 compounds it was found that the ordering temperature and saturation magnetic moment per Fe-atom changed with composition x. Ferromagnetic micronsized thin film elements in permalloy, Fe20Ni80, and epitaxial Fe/Co multilayers were studied. For the Fe/Co multilayer thin film elements it was found that it is possible to change the magnetization reversal process, by aligning the easy shape anisotropy axis with either the easy or the hard magnetocrystalline anisotropy axis. In the permalloy elements the effect of inter-elemental distance was found to determine the interval of fields where multidomain states were stable, so that for shorter inter-elemental distances multidomain states were stable for a shorter interval of fields. The domain structure of permalloy elements in rotating magnetic fields was also studied. Higher applied fields led to a broader interval of angles in which saturated states were stable.
44

Electron transport through domain walls in ferromagnetic nanowires

Falloon, Peter E. January 2006 (has links)
[Truncated abstract] In this dissertation we present a theoretical study of electron transport through domain walls, with a particular focus on conductance properties, in order to understand various transport measurements that have been carried out recently on ferromagnetic nanowires. The starting point for our work is a ballistic treatment of transport through the domain wall. In this case conduction electrons are generally only weakly reflected by the domain wall, and the principal effect is a mixing of transmitted electron spins between up and down states. For small spin-splitting of conductance electrons the latter can be characterized by an appropriate adiabaticity parameter. We then incorporate the effect of spin-dependent scattering in the regions adjacent to the domain wall through a circuit model based on a generalization of the two-resistor theory of Valet and Fert. Within this model we find that the domain wall gives rise to an enhancement of resistance similar to the giant magnetoresistance effect found in ferromagnetic multilayer systems. The effect is largest in the limit of an abrupt wall, for which there is complete mistracking of spin, and decreases with increasing wall width due to the reduction of spin mistracking. For reasonable physical parameter values we find order-of-magnitude agreement with recent experiments. Going beyond the assumption of ballistic transport, we then consider the more realistic case of a domain wall subject to impurity scattering. A scattering matrix formalism is used to calculate conductance through a disordered region with either uniform magnetization or a domain wall. By combining either amplitudes or probabilities we are able to study both coherent and incoherent transport properties. The coherent case corresponds to elastic scattering by static defects, which is dominant at low temperatures, while the incoherent case provides a phenomenological description of the inelastic scattering present in real physical systems at room temperature. It is found that scattering from impurities increases the amount of spin mistracking of electrons travelling through a domain wall. This leads, in the incoherent case, to a reduction of conductance through the domain wall as compared to a uniformly magnetized region. In the coherent case, on the other hand, a reduction of weak localization and spin-reversing reflection amplitudes combine to give a positive contribution to domain wall conductance, which can lead to an overall enhancement of conductance due to the domain wall in the diffusive regime. A reduction of universal conductance fluctuations is found in a coherent disordered domain wall, which can be attributed to a decorrelation between spin-mixing and spin-conserving scattering amplitudes.
45

Structural studies of homologous recombination in bacteria

Xing, Xu, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 152-161).
46

Domain coupling and resistance in perpendicularly magnetized metal-oxide bilayers /

Chun, Yoonsoo. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 122-125).
47

Zavedení doménové struktury v rozsáhlé firmě / Implementation of the Domain Structure in a Large Company

Hošek, David January 2017 (has links)
This master`s thesis deals with domain structure. The main concern of this work is analysis and implementation of the Domain Structure in a company. Domain structure will be introduced because of the current unsatisfactory solutions and increase information security. The name of the company is not specified in this thesis.
48

Structural studies of homologous recombination in bacteria

Xing, Xu 24 August 2007 (has links)
No description available.
49

The transport properties of two dimensional electron gases in spatially random magnetic fields

Rushforth, Andrew William January 2000 (has links)
No description available.
50

Aspects of spin polarised transport

Allen, William D. January 1999 (has links)
No description available.

Page generated in 0.1887 seconds