• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation et classification dynamique de données temporelles non stationnaires / Dynamic classification and modeling of non-stationary temporal data

El Assaad, Hani 11 December 2014 (has links)
Cette thèse aborde la problématique de la classification non supervisée de données lorsque les caractéristiques des classes sont susceptibles d'évoluer au cours du temps. On parlera également, dans ce cas, de classification dynamique de données temporelles non stationnaires. Le cadre applicatif des travaux concerne le diagnostic par reconnaissance des formes de systèmes complexes dynamiques dont les classes de fonctionnement peuvent, suite à des phénomènes d'usures, des déréglages progressifs ou des contextes d'exploitation variables, évoluer au cours du temps. Un modèle probabiliste dynamique, fondé à la fois sur les mélanges de lois et sur les modèles dynamiques à espace d'état, a ainsi été proposé. Compte tenu de la structure complexe de ce modèle, une variante variationnelle de l'algorithme EM a été proposée pour l'apprentissage de ses paramètres. Dans la perspective du traitement rapide de flux de données, une version séquentielle de cet algorithme a également été développée, ainsi qu'une stratégie de choix dynamique du nombre de classes. Une série d'expérimentations menées sur des données simulées et des données réelles acquises sur le système d'aiguillage des trains a permis d'évaluer le potentiel des approches proposées / Nowadays, diagnosis and monitoring for predictive maintenance of railway components are important key subjects for both operators and manufacturers. They seek to anticipate upcoming maintenance actions, reduce maintenance costs and increase the availability of rail network. In order to maintain the components at a satisfactory level of operation, the implementation of reliable diagnostic strategy is required. In this thesis, we are interested in a main component of railway infrastructure, the railway switch; an important safety device whose failure could heavily impact the availability of the transportation system. The diagnosis of this system is therefore essential and can be done by exploiting sequential measurements acquired successively while the state of the system is evolving over time. These measurements consist of power consumption curves that are acquired during several switch operations. The shape of these curves is indicative of the operating state of the system. The aim is to track the temporal dynamic evolution of railway component state under different operating contexts by analyzing the specific data in order to detect and diagnose problems that may lead to functioning failure. This thesis tackles the problem of temporal data clustering within a broader context of developing innovative tools and decision-aid methods. We propose a new dynamic probabilistic approach within a temporal data clustering framework. This approach is based on both Gaussian mixture models and state-space models. The main challenge facing this work is the estimation of model parameters associated with this approach because of its complex structure. In order to meet this challenge, a variational approach has been developed. The results obtained on both synthetic and real data highlight the advantage of the proposed algorithms compared to other state of the art methods in terms of clustering and estimation accuracy

Page generated in 0.1744 seconds