• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 14
  • 5
  • 1
  • Tagged with
  • 131
  • 131
  • 51
  • 41
  • 35
  • 34
  • 33
  • 31
  • 27
  • 19
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Quadratic Optical Nonlinearity And Geometry Of 1:1 Electron Donor Acceptor Complexes In Solution

Ghosh, Sampa 01 June 2008 (has links)
The knowledge of geometry of molecular complexes formed via molecular association in solution through weak interactions is always important to understand the origin of stability and function of an array of molecules, supramolecular assemblies, and macromolecular networks. Simple 1:1 molecular complexes are very useful in this regard as they provide a model to understand both the nature of these interactions and their structural implications. Several weak noncovalent forces from long range (van der Waal’s, electrostatic, induction, dispersion) to short range (charge transfer) govern the geometry, that is, relative orientation of the two molecules in such a complex. On one hand, we find 1:1 electron donor acceptor (EDA) complexes such as naphthalene-tetracyanobenzene, hexamethylbenzene-chloranil etc. which stack parallel or in slipped parallel geometry in their crystals. On the other, benzene dimer has been found to stabilize in T shaped geometry in all its three physical states. In this thesis, I focus on 1:1 EDA complexes in solution. A good volume of literature is available which deals with the optical studies on the formation of such complexes. It has been suggested that the nature of the intermolecular interactions stabilizing these complexes in the gas phase or in their crystals is modified by the presence of solvent-solute interactions in solution thus bringing in difference in the solution geometry. However, the existing experimental techniques, both optical and magnetic, are unable to determine the exact geometries of 1:1 EDA complexes in solution. This opens an opportunity to probe their geometry in solution. The quadratic nonlinearity or first hyperpolarizability (β) of a molecule is a measure of the change in dipole moment (or polarization) in the second order of the applied electrical field and thus has a purely electronic origin. It is a tensorial property and can be resolved in components along the three dimensions. The number of β components and the nonlinear optical anisotropies in a typical donor-acceptor type dipolar molecule, defined as (equation) (where1, 2, 3 axes define the molecular frame, 1 being the direction along the principal axis of symmetry and pointing from the acceptor toward the donor), are determined by the symmetry /structure of the molecule. It has been shown theoretically that the 1:1 EDA complexes possess large hyperpolarizabilities. In the case of pNA dimers calculation revealed that the geometry of the dimer and its symmetry is important for obtaining the correct estimate of β from its tensorial components. Therefore, it should be possible to use the values of tensorial β components to construct the unknown geometry of such complexes. Experimentally macroscopic depolarization ratios (D and D′) in the laboratory fixed frame (XYZ, X being the direction of polarization and Z the direction of propagation of the incident light), are measured from the polarization resolved intensities of second harmonic scattering from molecules in solution using the hyper-Rayleigh scattering technique. The depolarization ratios are correlated to the anisotropy parameters, u and v through a co-ordinate transformation. In this thesis I, have first, characterized the quadratic nonlinear optical property of a variety of 1:1 electron donor acceptor complexes and used the values of u and v obtained from depolarized hyper-Rayleigh scattering to deduce their geometry in solution. Chapter 1 provides an introduction to the 1:1 electron donor acceptor complexes, their relevance to chemistry and biology. It also contains an introduction to nonlinear optical processes in molecules. The objective of the present work and scope of the investigation carried out in this thesis is presented in this chapter. Chapter 2 describes the details of the experimental polarization resolved HRS technique. The geometrical model adopted for the analysis of the HRS data has also been introduced and the method of analysis has been described in detail in this chapter. Chapter 3 presents the measurement of β values of two series of 1:1 EDA complexes of variously substituted methylbenzenes donors with tetrachloro-p-benzoquinone (CHL) and dicyanodichloro-p-benzoquinone (DDQ) acceptors at 1064 nm. In agreement with recent theoretical results we find large first hyperpolarizabilities for these complexes. The β values are greater than that of the typical push-pull molecule p-nitroaniline (pNA). We also find that in general β decreases with decrease in the donor strength. Chapter 4 presents the β values for the two series of EDA complexes of CHL and DDQ acceptors at 1907 nm. The values of β are less in magnitude at 1907 nm than that at 1064 nm which is due to the dispersion effect in β. In Chapter 5 and 6, it is described how depolarized hyper-Rayleigh scattering can be utilized to probe geometries of 1:1 complexes in solution. Chapter 5 concentrates mainly on 1:1 EDA complexes of CHL and DDQ and TCNB (tetracyanobenzene), while chapter 6 contains examples of other 1:1 molecular complexes where the noncovalent interactions are much weaker, such as in benzene-naphthalene, benzene-methoxybenzene, benzene-hexafluorobenzene and benzene-chlorobenzene pairs. We find the geometry of 1:1 EDA complexes in solution in terms of tilt angle (θ) and twist angle (ϕ) between the donor and acceptor pairs. The angle θ varies from 29°-47° for different pairs of EDA complexes, while ϕ varies within 34° and 38°. We find that the geometry of 1:1 EDA complexes in solution is different (twisted and tilted cofacial and twisted ‘V’) from those in the crystalline or gaseous states (cofacial), if known. We find that both benzene-naphthalene and benzene-chlorobenzene pairs assume twisted ‘T’ shape geometry with θ = 82° and 85°, respectively, and φ = 38°, while benzene-hexafluorobenzene assumes a twisted ‘V’ shape. A strong solvent effect is seen in the geometry of the benzene- methoxybenzene complex. The tilt angle is 55° when chloroform is used as a solvent and it is 82° without chloroform. Chapter 7 is the concluding chapter where the main work done in this thesis is summarized and future directions are presented.
82

Solution Processable Conducting Films based on Doped Polymers:

Karpov, Yevhen 28 November 2017 (has links) (PDF)
Thesis describes recent advances in the synthesis of donor-acceptor conjugated copolymers and their efficient doping via molecular p-dopants.
83

Solution Processable Conducting Films based on Doped Polymers:: Synthesis and Characterization

Karpov, Yevhen 10 November 2017 (has links)
Thesis describes recent advances in the synthesis of donor-acceptor conjugated copolymers and their efficient doping via molecular p-dopants.:Chapter I Preface Motivation and Goals Outline 7 Chapter II 8 State of the Art & Characterization Techniques 8 2.1. General Introduction 8 2.1.1. Concept of Conjugated Polymers 9 2.1.2. Electronic Conduction and Necessity of Doping in Conjugated Polymers 11 2.1.3. Solubility and Processing. 14 2.2. Doping 17 2.2.1. Concept of Doping in Conjugated Polymers 17 2.2.2. Morphological Changes of the Material upon Doping. Conductivity. 20 2.2.3. State-of-the-art p-dopants. 23 2.3. Synthetic Strategies for the Design of (Semi)conducting Polymers 28 2.3.1. A Concise Review: from Polyacetylene till Modern DA Polymers 28 2.3.2. Synthetic Routes to Conjugated Polymers 31 2.3.3. Step-growth vs Chain-growth 34 2.3.4. Benchmark solution-processable Polymers 38 2.4. Characterization techniques 41 2.4.1. Conductivity Measurements 41 2.4.2. Electrochemical Voltammetry 42 2.4.3. Uv-vis-near-infrared 44 2.4.4. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. 44 2.4.5. Morphological studies. 45 2.4.6. Electron Spin Resonance Spectroscopy. 46 Chapter III 48 Results & Discussion 48 3.1. Diketopyrrolopyrrole-Based Copolymers 50 3.1.1. Motivation 50 3.1.2. Results and Discussion 51 3.1.4. Summary 89 3.2. Naphthalene Diimide-based Copolymer 90 3.2.1. Motivation 90 3.2.2. Results and Discussion 92 3.2.4. Summary 105 3.3. Isoindigo-Based Copolymers 107 3.3.1. Motivation 107 3.3.2. Results and Discussion 108 3.3.4. Summary 119 Summary & Conclusions 120 Outlook 123 Chapter IV 125 Experimental Part 125 4.1. General Methods and Instrumentation 125 4.2. Synthesis 129 4.2.1. Synthesis of diketopyrrolopyrrole copolymer. 129 4.2.2. Synthesis of electron-conducting polymer (PNDIT2) 132 4.2.3. Synthesis of polyisoIndigo 132 4.2.3. Synthesis of Dopants 135 4.3. Cyclic voltammetry measurements 136 4.4. GIWAX data. 143 4.5. Films preparation 145 References 147 Table of Abbreviations 159 List of Publications 161 Acknowledgements 162 Appendix 163
84

FLUORINATED ARENE, IMIDE AND UNSATURATED PYRROLIDINONE BASED DONOR ACCEPTOR CONJUGATED POLYMERS: SYNTHESIS, STRUCTURE-PROPERTY AND DEVICE STUDIES

Liyanage, Arawwawala Don T 01 January 2013 (has links)
FLUORINATED ARENE, IMIDE AND LACTAM-FUNCTIONALIZED DONOR ACCEPTOR CONJUGATED POLYMERS: SYNTHESIS, STRUCTURE-PROPERTY AND DEVICE STUDIES After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituent’s affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (eg: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3’-dialkyl(3,3’-R2T2) or 3,3’-dialkoxy bithiophene (3,3’-RO2T2) units as electron donors. A detail study was done using 3,3’-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on the structure-property study of imide functionalized D-A polymers. Here we used thiophene-imide (TPD) as the acceptor moiety and prepare several D-A polymers by varying the donor units. When selecting the donor units, more priority goes to the fused ring systems. One main reason to use imide functionality is due to the, open position of the imide nitrogen, which provides an attaching position to alkyl substituent. Through this we can easily manipulate solubility and solid state packing arrangement. Also these imide acceptors have low-lying LUMOs due to their electron deficient nature and this will allow tuning the optical energy gap by careful choice of donor materials with different electron donating ability. The fourth chapter mainly contribute to the synthesis and structure property study of a completely novel electron acceptor moiety consist of a unsaturated pyrrolidinone unit known as Pechmann dye (PD) core. Pechmann dyes are closely related to the Indigo family. This can refer as 3-butenolide dimer connected via an alkene bridge, containing a benzene ring at the 5 and 5’ positions of the lactone rings. We have prepared several D-A polymers using this PD system with benzodithiophene (BDT) as the donor unit. Different to common D-A polymers the HOMO and LUMO of the PD acceptor moiety are energetically located within the gap of the BDT, so that the electronic and optical properties (HOMO-LUMO transition) are dictated by the PD properties. The promising electronic properties, band gaps, high absorption coefficients and broad absorption suggest this new D-A polymers as an interesting donor material for organic solar cell (OSC) applications.
85

Synthesis and crystallographic studies of novel organotin acenaphthene compounds

Athukorala Arachchige, Kasun S. January 2014 (has links)
Organic frameworks with rigid backbones, such as acenaphthene, are highly suitable for the study of interatomic interactions. The short “natural” peri-distance (2.44 Å) and the rigidity of the aromatic system causes considerable steric strain between peri-substituted heteroatoms. As a consequence, substitution at both peri-positions leads to in- and out-of-plane distortions, which often result in buckling of the ring system. In order to relax this geometric strain, weak bonding interactions can also exist between the peri-substituents. This thesis focuses on the synthesis, structural characterisation and investigation of a range of sterically crowded peri-substituted acenaphthene compounds. This involves the study of the acenaphthene geometry, through X-ray crystallography when different peri-substituents occupy the close 5,6-positions; our main focus is to study weak non-bonded interactions that can occur across the peri-gap, for example weakly attractive three-centre four-electron (3c-4e) type interactions which are known to prevail in such compounds under the appropriate conditions. Repulsion within these systems, resulting from the steric crowding of the peri-space is also investigated, employing changes in bond lengths, bay-region angle splay, displacement of atoms from the mean plane and central acenaphthene torsion angles to help quantify the degree of acenaphthene distortion, which are all conveniently probed by the peri-distance. To this end we have synthesised a range of novel sterically crowded mixed bromo-tin acenaphthene derivatives (Chapter 3), chalcogen-tin acenaphthene molecules (Chapter 4), phosphorus–tin derivatives (Chapter 5) and a series of homologous tin-tin acenaphthenes (Chapter 6). All the compounds studied in this thesis were characterised by multinuclear NMR spectroscopy and X-ray crystallography in an effort to gain a greater understanding of the deformation that occurs when disparate functionalities are located in close proximity and explore the potential for weak non-covalent intramolecular interactions to occur.
86

Directed C-H borylation for the synthesis of fused and ladder type conjugated oligomers and polymers

Crossley, Daniel January 2016 (has links)
The synthesis, photophysical and electronic properties of a series of novel boron containing fused and ladder type donor-acceptor (D-A) oligomers and polymers are reported. The synthesis was achieved through coordination of the basic functionality of the ubiquitous benzothiadiazole acceptor unit onto a boron Lewis acid followed by an electrophilic aromatic borylation resulting in the formation of fused and ladder type structures (termed borylative fusion). The novel C,N-chelated borane structures disclosed herein are a new member of a large family of tetra-coordinate organoboron compounds that are used for the construction of highly emissive materials. Upon borylation large bathochromic shifts in the absorption and fluorescence spectra were observed, DFT and cyclic voltammetry demonstrate that this is a result of a significant reduction of the LUMO energy levels whist the HOMO energy levels remains relatively unperturbed. These large bathochromic shifts lead to materials that show far red/NIR emission in the solid state with absolute quantum yields of up to 44%. Furthermore, the frontier molecular orbital energy levels of these fused structures can be modulated through judicious selection of the exocyclic boron substituents. These novel borocycles also proved stable to a range of cross-coupling conditions which facilitated further modulation of the frontier molecular orbitals and emissive properties. Borylative fusion was also applicable to D-A conjugated polymers, this represents a facile post-polymerisation functionalisation that is an effective method of modulating the photophysical properties of D-A conjugated polymers. Solution processed OLEDs with far red/NIR electroluminescence (EL) were fabricated from these materials. These devices showed good external quantum efficiency values (EQE) for the far red/NIR region of the electromagnetic spectrum (EQE > 0.4 % for maximum EL > 700 nm).
87

Synthesis And Electrochemical Studies Of Fluorene And Benzimidazole Containing Conjugated Polymers

Namal, Imge 01 January 2013 (has links) (PDF)
The synthesis and characterization of two donor acceptor type conjugated polymers were investigated. The electrochemical properties were examined using cyclic voltammetry, spectroelectrochemistry and kinetic studies. The increase in the alkyl chain length attached to the fluorene unit was investigated by the corresponding electrochemical characteristics. The synthesis was carried out via Stille coupling of 4,7- dibromo-4&#039 / -(tert-butyl)spiro[benzo[d]imidazole-2,1&#039 / cyclohexane] and 2,5- bis(tributylstannyl)thiophene with 9,9-dihexyl-9H fluorene and 9,9-didodecyl-9H fluorene respectively. Both of the polymers were neutral state green polymers. They had optical band gaps of 2.46 and 2.54 eV respectively. Increasing the chain length resulted in an increase in solubility and processibility of the polymer but also an increase in the band gap. This was due to the increased bulkyness of the alkyl group, leading to a decrease in the effective conjugation and planarity. They both had distinctive &pi / -&pi / * transitions, band structure and backbone that provides oxidative doping. P1, with the shorter alkyl chain had a lower oxidation potential than P2. Neither of the polymers was capable of being n-doped. They were both multichromic, revealing colors from neutral state green to doped state blue.
88

Novel Donor-acceptor Type Green Polymer Bearing Pyrrole As The Donor Unit With Excellent Switching Times And Very Low Band Gap And Its Multichromic Copolymers

Celebi, Selin 01 September 2009 (has links) (PDF)
A new neutral state green polymer, poly (2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) (PTBPPQ) was synthesized and its copolymer with bis(3,4-ethylenedioxythiophene) (BiEDOT) and 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-dodecyl-2H-benzo [1,2,3] triazole (BEBT) were produced. Finally polymers&rsquo / potential use as an electrochromic material was investigated. Electrochromic properties of the polymers were investigated by several methods including spectroelectrochemistry, kinetic and colorimetry studies. Key properties of conjugated polymers such as band gap, maximum absorption wavelength, the intergap states that appear upon doping and evolution of polaron and bipolaron bands were investigated via spectroelectrochemistry experiments. Switching times and optical contrasts of the homopolymer and the copolymer were evaluated via kinetic studies. Copolymer of TBPPQ with BiEDOT and BEBT were electrochemically synthesized and characterized. Resulting copolymer films have distinct electrochromic properties and revealed multichromism through the entire visible region. Although BiEDOT and BEBT have different oxidation potentials, the resulting copolymers have very similar redox behaviors. In a monomer free solution, both copolymers show four colors from purple, gray, light green to transmissive blue with the variation of the applied potential. Copolymerization with BiEDOT and BEBT not only decreases the band gap, Eg, but also enhances the electrochromic and optical properties. Hence, electrochemical copolymerization is considered to be a powerful tool to improve the electrochromic properties of quinoxaline derivatives. It should be noted that PTBPPQ is one of the few examples of neutral state green polymeric materials with superior switching properties. Hence, PTBPPQ can be used as a green polymeric material for display technologies.
89

Syntheses Of Benzotriazole Bearing Donor Acceptor Type Random Copolymers For Full Visible Light Absorption

Oktem, Gozde 01 September 2011 (has links) (PDF)
The synthesis and preliminary optoelectronic properties of a series of donor-acceptor (DA) type polymers differing by the acceptor units in the polymer backbone were investigated. Polymers CoP1, CoP2 and CoP3 were designed to yield alternating DA segments with randomly distributed different acceptor units along polymer backbone. The combination of neutral state red colored and neutral state green colored materials resulted in different neutral state colors with respect to their additional acceptor unit. 5,8-Dibromo-2,3-bis(4-tert-butylphenyl) quinoxaline, 5,8-dibromo-2,3-di(thiophen-2-yl)quinoxaline and 4,7-dibromobenzo[c][1,2,5]selenadiazole units were perceived as additional acceptor units and these constituents were combined with the 4,7-dibromo-2-dodecyl-2H-benzo[d][1,2,3]triazole unit and the 2,5-bis(tributylstannyl)thiophene moiety via Stille coupling. The resultant donor acceptor type random copolymers indicated that possessing 5,8-dibromo-2,3-di(thiophen-2-yl)quinoxaline as an extra electron deficient with 4,7-dibromo-2-dodecyl-2H-benzo[d][1,2,3]triazole unit on the same polymer backbone originated a neutral state black colored copolymer along with spanning the entire visible spectrum.
90

Reactions at nitrogenous ligands on oxidizing group 8 metal centers /

Soper, Jake D. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 164-177).

Page generated in 0.0562 seconds