• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 641
  • 175
  • 156
  • 57
  • 40
  • 16
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • Tagged with
  • 1515
  • 206
  • 188
  • 180
  • 161
  • 150
  • 141
  • 106
  • 100
  • 99
  • 93
  • 92
  • 88
  • 85
  • 84
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Multiple Binding Sites for [<sup>125</sup>I]RTI-121 and Other Cocaine Analogs in Rat Frontal Cerebral Cortex

Boja, J. W., Carroll, F. I., Vaughan, R. A., Kopajtic, T., Kuhar, M. J. 01 September 1998 (has links)
In an effort to identify novel binding sites for cocaine and its analogs, we carried out binding studies with the high-affinity and selective ligand [125I]RTI-121 in rat frontal cortical tissue. Very low densities of binding sites were found. Saturation analysis revealed that the binding was to both high- and low-affinity sites. Pharmacological competition studies were carried out with inhibitors of the dopamine, norepinephrine, and serotonin transporters. The various transporter inhibitors inhibited the. binding of 15 pM [125I]RTI-121 in a biphasic fashion following a two-site binding model. The resultant data were complex and did not suggest a simple association with any single transporter. Correlational analysis supported the following hypothesis: [125I] RTI-121 binds to known transporters and not to novel sites; these include dopamine, norepinephrine, and serotonin transporters. Immunoprecipitation of transporters photoaffinity labeled with [125]RTI-82 and subsequent analysis of SDS-page gels revealed the presence of authentic dopamine transporters in these samples; displacement of the photoaffinity label occurred with a typical dopamine transporter pharmacology. These data are compatible with the binding properties of RTI- 121 and the presence of several known transporters in the tissue studied.
532

Dopamine Receptor Supersensitivity: An Outcome and Index of Neurotoxicity

Kostrzewa, Richard M., Kostrzewa, John P., Brus, Ryszard 01 December 2003 (has links)
The characteristics feature of neurotoxicity is a definable lesion which can account for observed deficits, corresponding to loss of nuclei or axonal fibers normally comprising a specific pathway or tract. However, with ontogenetic lesions, the operative definition fails. In rats lesioned as neonates with 6-hydroxydopamine (6-OHDA), near-total destruction of dopamine-(DA-) containing nerves is produced, and this itself is definable. However, the most prominent feature of rats so-lesioned is the DA receptor supersensitivity (DARSS) that develops and then persists throughtout the lifespan. DA D1 receptors show overt supersensitivity to agonists producing vacuous chewing movements (VCMs), while D1 receptors associated with locomotor activity have a latent supersensitivity that must be unmasked by repeated D1 or D2 agonist treatments - a 'priming' phenomenon. This D1 DARSS is not usually associated in either a change in D1 receptor number (Bmax) or affinity (Kd). In contrast to D1 DARSS, D2 receptors are not so predictably supersensitized by a lession of DA neurons. In reality, the permanently exaggerated response to an agonist by supersensitized receptors is per se a manifestation of neurotoxicity. Despite dramatic behavioral responses mediated by supersensitized receptors, DARSS has not been easy to correlate with enhanced production of second messengers or early response genes. Altered signaling (i.e., neuronal cross-talk) in defined pathways may represent the mechanism that produces so-called receptor supersensitization. Longlived agonist-induced behavioral abnormality, with or without anatomic evidence of a neuronal lesion, is one of the products of DA D1 receptor supersensitization - it self an index of neurotoxicity.
533

Regulation of Nitric Oxide Production From Macrophages by Lipopolysaccharide and Catecholamines

Chi, David S., Qui, Min, Krishnaswamy, Guha, Li, Chuanfu, Stone, William 01 January 2003 (has links)
Catecholamines are elaborated in stress responses to mediate vasoconstriction, and elevate systemic vascular resistance and blood pressure. They are elaborated in disorders such as sepsis, cocaine abuse, and cardiovascular disease. The aim of the study was to determine whether catecholamines affect nitric oxide (NO) production, as NO is a vasodilator and counteracts the harmful effects of catecholamines. RAW264.7 macrophage cells were cultured with lipopolysaccharide (LPS)±epinephrine, norepinephrine, and dopamine at 5×10-6M concentrations for 24h. Supernatants were harvested for measuring NO by spectrophotometry using the Greiss reagent and cells were harvested for detecting inducible NO synthase (iNOS) by Western blot. NO production in RAW 264.7 macrophages was increased significantly by addition of LPS (0.5-10ng/ml) in a dose-dependent fashion. The NO production induced by LPS was further enhanced by epinephrine and norepinephrine, and to a lesser extent by dopamine. These increases in NO correlated with expression of iNOS protein in these cells. The enhancing effect of iNOS synthesis by epinephrine and norepinephrine on LPS-induced macrophages was down regulated by β-adrenoceptor antagonist, propranolol, and dexamethasone. The results suggest that catecholamines have a synergic effect on LPS in induction of iNOS synthesis and NO production, and this may mediate some of the vascular effects of infection. These data support a novel role for catecholamines in disorders such as septic shock and cocaine use, and indicate that β-adrenoceptor antagonists and glucocorticoids may be used therapeutically for modulation of the catecholamine-NO axis in disease states.
534

Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings

Archer, Trevor, Kostrzewa, Richard M. 01 January 2016 (has links)
Physical exercise offers a highly effective health-endowering activity as has been evidence using rodent models of Parkinson’s disease (PD). It is a particularly useful intervention in individuals employed in sedentary occupations or afflicted by a neurodegenerative disorder, such as PD. The several links between exercise and quality-of-life, disorder progression and staging, risk factors and symptoms-biomarkers in PD all endower a promise for improved prognosis. Nutrition provides a strong determinant for disorder vulnerability and prognosis with fish oils and vegetables with a mediterranean diet offering both protection and resistance. Three factors determining the effects of exercise on disorder severity of patients may be presented: (i) Exercise effects upon motor impairment, gait, posture and balance, (ii) Exercise reduction of oxidative stress, stimulation of mitochondrial biogenesis and up-regulation of autophagy, and (iii) Exercise stimulation of dopamine (DA) neurochemistry and trophic factors. Running-wheel performance, as measured by distance run by individual mice from different treatment groups, was related to DA-integrity, indexed by striatal DA levels. Finally, both nutrition and exercise may facilitate positive epigenetic outcomes, such as lowering the dosage of L-Dopa required for a therapeutic effect.
535

Maternal Lead Exposure Produces Long-Term Enhancement of Dopaminergic Reactivity in Rat Offspring

Szczerbak, Graziyna, Nowak, Przemysław, Kostrzewa, Richard M., Brus, Ryszard 01 October 2007 (has links)
To determine the effect of prenatal lead exposure on brain monoaminergic systems, pregnant rats were given tap water containing 250 ppm lead acetate, for the duration of pregnancy, while tap water without lead (Pb2+) was substituted at birth. Control rats were derived from dams that consumed tap water during pregnancy, and had no exposure to lead afterwards. At 12 weeks after birth, Pb2+ content of brain cortex was increased 3- to 4-fold (P < 0.05). At this time the endogenous striatal levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid were 19% lower in Pb2+ exposed rats (P < 0.05), while there was no change in the striatal level of dopamine (DA), noradrenaline, 3,4-dihydroxyphenylglycol, serotonin (5-HT) and 5-hydroxyindoleacetic acid (HPLC/ED). Also there was no change in these monoamines and metabolites in the prefrontal cortex of Pb 2+ exposed rats. However, turnover of 5-HT in prefrontal cortex, as indicated by 5-hydroxytryptophan accumulation 30 min after acute treatment with the decarboxylase inhibitor NSD-1015 (100 mg/kg IP), was lower in the Pb 2+ exposed rats. In the striatum AMPH-induced (1 mg/kg IP) turnover of DA, evidenced as L-DOPA accumulation after NSD-1015, was increased to a lesser extent in the Pb2+ exposed rats (P < 0.05). The nitric oxide synthase inhibitor 7-nitroindazole (10 mg/kg IP) attenuated the latter effect, indicating that neuronal NO mediates this AMPH effect, at least in part. Moreover, DA D2 receptor sensitivity developed in Pb2+ exposed rats, as evidenced by enhanced quinpirole-induced yawning activity and enhanced quinpirole-induced locomotor activity (each, P < 0.05). These findings indicate that ontogenetic exposure to lead can have consequences on monoaminergic neuronal function at an adult stage of life, generally promoting accentuated behavioral effects of direct and indirect monoaminergic agonists, and related to increased dopamine turnover in basal ganglia.
536

Chronic Methylphenidate Induces Increased Quinone Production and Subsequent Depletion of the Antioxidant Glutathione in the Striatum

Oakes, Hannah V., Ketchem, Shannon, Hall, Alexis N., Ensley, Tucker, Archibald, Kristen M., Pond, Brooks B. 01 December 2019 (has links)
Background: Methylphenidate (Ritalin®) is a psychostimulant used chronically to treat attention deficit hyperactivity disorder. Methylphenidate acts by preventing the reuptake of dopamine and norepinephrine, resulting in an increase in these neurotransmitters in the synaptic cleft. Excess dopamine can be autoxidized to a quinone that may lead to oxidative stress. The antioxidant, glutathione helps to protect the cell against quinones via conjugation reactions; however, depletion of glutathione may result from excess quinone formation. Chronic exposure to methylphenidate appears to sensitize dopaminergic neurons to the Parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We hypothesized that oxidative stress caused by the autooxidation of the excess dopamine renders dopaminergic neurons within the nigrostriatal pathway to be more sensitive to MPTP. Methods: To test this hypothesis, male mice received chronic low or high doses of MPH and were exposed to saline or MPTP following a 1-week washout. Quinone formation in the striatum was examined via dot blot, and striatal GSH was quantified using a glutathione assay. Results: Indeed, quinone formation increased with increasing doses of methylphenidate. Additionally, methylphenidate dose-dependently resulted in a depletion of glutathione, which was further depleted following MPTP treatment. Conclusions: Thus, the increased sensitivity of dopamine neurons to MPTP toxicity following chronic methylphenidate exposure may be due to quinone production and subsequent depletion of glutathione.
537

Noradrenergic Modulation on Dopaminergic Neurons

Zhu, Meng Yang 01 November 2018 (has links)
It is now well accepted that there is a close relationship between noradrenergic and dopaminergic neurons in the brain, especially referring to the modulation of the locus coeruleus–norepinephrine (LC-NE) system on dopamine transmission. The disturbance of this modulation may contribute to neurodegeneration of dopaminergic neurons in Parkinson’s disease. In this article, we briefly review evidence related to such modulation. Firstly, we illustrated the noradrenergic innervation and functional implication for the LC-NE system and nigra–striatum dopaminergic system. Furthermore, we depicted neuroprotective effects of the LC-NE on dopaminergic neurons in vivo and in vitro. Moreover, we present data implicating the potential mechanisms underlying the modulation of the LC-NE system on dopaminergic neurons, in particular the effects of NE as a neurotrophic factor and through its ability to stimulate the expression of other neurotrophic factors, such as the brain-derived neurotrophic factor. Finally, we discussed other mechanisms intrinsic to NE’s effects. A better understanding of the noradrenergic modulation on dopaminergic neurons may be rewarding by significant advances in etiologic study and promising treatment of Parkinson’s disease.
538

Insecticide-Mediated Neurochemical and Behavioral Changes as Possible Predisposing Environmental Factors in Idiopathic Parkinson's Disease

Kirby, Michael L. Jr. 17 June 1998 (has links)
Epidemiological studies implicate pesticide exposure as a possible etiologic factor in idiopathic Parkinson's Disease, which results from degeneration of nigrostriatal neurons, along with reduced levels of the neurotransmitter, dopamine. Behavioral and neurochemical analyses in C57BL6 mice were performed following a subchronic dosing regime with the organochlorine insecticide heptachlor or the pyrethroid deltamethrin. Results were compared to those induced by the established parkinsonian neurotoxicant, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At the end of the treatment period, mice were assessed for effects on behavior, as well as levels of striatal dopamine, nerve terminal respiration, and synaptosomal dopamine transport. The primary behavioral effect of deltamethrin was incoordination, while heptachlor caused hyperexcitability and increased locomotion. The major neurochemical effect observed for both compounds was upregulation of the presynaptic dopamine transporter (DAT) by 70% and 100% for deltamethrin and heptachlor, respectively. The insecticides exerted only modest effects on striatal levels of dopamine and its metabolite, dihydroxyphenylacetic acid. However, doses of heptachlor higher than those which caused induction of DAT (e.g. greater than or equal to 25 mg/kg), when administered subchronically, were found to cause convulsions in some animals and caused marked, dose-dependent depression of basal striatal tissue respiration rates. No synergism was observed between the effects of insecticides and MPTP. Enhanced transport was thought to be a compensatory effect from increased release of transmitters by the insecticides, <i>in vivo</i>. Striatal dopamine, GABA and glutamate nerve terminals were differentially sensitive to the releasing effects of heptachlor compared to cortical serotonin terminals, and responded in the following rank order of sensitivity: dopamine > GABA > glutamate > serotonin. Additional experiments to characterize the mechanism(s) by which cyclodienes facilitate release of neurotransmitters in synaptosomes demonstrated a lack of distinct Ca²⁺ component and no involvement of retrograde DAT activity, suggesting that released label was of vesicular origin, but did not require Ca²⁺. Insecticidal toxicants, such as organochlorines and pyrethroids, which augment dopamine release and increase the maximal rate of dopamine uptake, may inundate the cytosol of nigrostriatal neurons with high concentrations of free dopamine, which has been shown by other researchers to induce apoptosis and may thereby contribute to the development of Parkinson's disease. Funding for this work was provided under grant number HHHREP 94-01 by the Hawaii Heptachlor Foundation, a non-profit organization. The Hawaii Heptachlor Foundation may be contacted at the following address: Ocean View Center PH#3, 707 Richards St., Honolulu, HI 96813. / Ph. D.
539

Neurobiological mechanisms of heterogeneous nuclear ribonucleoprotein H1 in methamphetamine stimulant and addictive behaviors

Yazdani, Neema 10 July 2017 (has links)
Addiction to psychostimulants such as methamphetamine (MA) is a significant public health issue in the United States with no FDA-approved pharmacological interventions. MA addiction is a heritable neuropsychiatric disorder, however, its genetic basis is almost entirely unknown. Available human genome-wide association studies (GWAS) lack sufficient power to detect the influence of common genetic variation on the risk of addiction. Mammalian model organisms offer an attractive alternative to more rapidly uncover novel genetic factors that contribute to addiction-relevant neurobehavioral traits. Using quantitative trait locus (QTL) mapping in mice, we identified a locus on chromosome 11 that contributed to a decrease in sensitivity to the locomotor stimulant properties of MA. To fine map this QTL, we generated interval-specific congenic lines and deduced a 206 kb critical interval on chromosome 11 that contained only two protein coding genes (Rufy1 and Hnrnph1). Replicate mouse lines heterozygous for Transcription Activator-like Effector Nucleases (TALENs)-induced frameshift deletions in Hnrnph1 (Hnrnph1+/-), but not in Rufy1 (Rufy1+/-), recapitulated the decrease in MA sensitivity observed in congenic mice; thus, identifying Hnrnph1 as a novel quantitative trait gene for MA sensitivity. Hnrnph1, an RNA-binding protein, has not previously been identified in human GWAS of neuropsychiatric disorders but has been implicated in mu-opioid receptor splicing associated with heroin dependence. The primary objectives of this dissertation is to (1) detail the forward genetic and reverse genetic approaches taken to identify Hnrnph1 as a quantitative trait gene for MA sensitivity; (2) assess the MA addiction-relevant behaviors presented by Hnrnph1+/- mice through conditioned place preference (CPP) and oral self-administration procedures; and (3) identify the neurobiological mechanisms through which Hnrnph1 affects behavior via transcriptome, immunohistochemical and neurochemical assessments of the mesocorticolimbic dopamine circuit. Overall, Hnrnph1+/- mice display increased dopaminergic innervation and MA dose-dependent dopamine release in nucleus accumbens, which could underlie reduced drug sensitivity, reward, and reinforcement. The results of this thesis provide substantial evidence to implicate Hnrnph1 in MA addiction.
540

Decrease in selected temperature after intracranial dopamine injections in goldfish

Panayiotides-Djaferis, Hercules Theodore 01 January 1987 (has links)
Goldfish (Carassius auratus) (40-80g) were injected with dopamine into the forebrain to study the possible involvement of this amine in central temperature regulation in these fish. Dopamine caused a decrease in selected temperature after injection into the rostral nucleus preopticus periventricularis (NPP). This effect was dependent on the dose of dopamine administered. Doses of 25, 50, 100 and 250 ng were used, injected in a volume of 0.2μ1. Injections in regions adjacent to the NPP elicited hypothermic effects only at the higher dosages. These effects were not consistent. Injections in caudal regions of the NPP elicited no effect. The effects of dopamine were blocked by haloperidol, a selective antagonist of dopamine. It is suggested that dopamine acts on central thermoregulatory neurons, present in the rostral NPP, in the mediation of thermoregulatory behavior. Further, it is suggested that this action is mediated via dopaminergic receptors.

Page generated in 0.0309 seconds