• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model Studies Of Time-dependent Ducting For High-frequency Gravity Waves And Associated Airglow Responses In The Upper Atmospher

Yu, Yonghui 01 January 2007 (has links)
This doctoral dissertation has mainly concentrated on modeling studies of shorter period acoustic-gravity waves propagating in the upper atmosphere. Several cases have been investigated in the literature, which are focusing on the propagation characteristics of high-frequency gravity wave packets. The dissertation consists of five main divisions of which each has its own significance to be addressed, and these five chapters are also bridged in order with each other to present a theme about gravity wave ducting dynamics, energetics, and airglows. The first chapter is served as an introduction of the general topic about atmospheric acoustic-gravity waves. Some of the historical backgrounds are provided as an interesting refreshment and also as a motivation reasoning this scientific research for decades. A new 2-D, time-dependent, and nonlinear model is introduced in the second chapter (the AGE-TIP model, acronymically named atmospheric gravity waves for the Earth plus tides and planetary waves). The model is developed during this entire doctoral study and has carried out almost all research results in this dissertation. The third chapter is a model application for shorter period gravity waves ducted in a thermally stratified atmosphere. In spite of mean winds the thermal ducting occurs because ducted waves are fairly common occurrences in airglow observations. One-dimensional Fourier analysis is applied to identify the ducted wave modes that reside within multiple thermal ducts. Besides, the vertical energy flux and the wave kinetic energy density are derived as wave diagnostic variables to better understand the time-resolved vertical transport of wave energy in the presence of multiple thermal ductings. The fourth chapter is also a model application for shorter period gravity waves, but it instead addresses the propagation of high-frequency gravity waves in the presence of mean background wind shears. The wind structure acts as a significant directional filter to the wave spectra and hence causes noticeable azimuthal variations at higher altitudes. In addition to the spectral analysis applied previously the wave action has been used to interpret the energy coupling between the waves and the mean flow among some atmospheric regions, where the waves are suspected to extract energy from the mean flow at some altitudes and release it to other altitudes. The fifth chapter is a concrete and substantial step connecting theoretical studies and realistic observations through nonlinearly coupling wave dynamic model with airglow chemical reactions. Simulated O (1S) (557.7 nm) airglow images are provided so that they can be compared with observational airglow images. These simulated airglow brightness variations response accordingly with minor species density fluctuations, which are due to propagating and ducting nonlinear gravity waves within related airglow layers. The thermal and wind structures plus the seasonal and geographical variabilities could significantly influence the observed airglow images. By control modeling studies the simulations can be used to collate with concurrent observed data, so that the incoherencies among them could be very useful to discover unknown physical processes behind the observed wave scenes.

Page generated in 0.0641 seconds