• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of vertebrate ladybird genes

Lukowski, Chris Unknown Date
No description available.
2

Regulation of vertebrate ladybird genes

Lukowski, Chris 06 1900 (has links)
Development of the vertebrate central nervous system is a complex process that relies on the accurate spatiotemporal distribution of signaling centers during embryogenesis. These signals provide cells with positional information, which is integrated via transcription factors and gene regulatory elements to generate a specific downstream gene expression profile that confers specific cellular functions. It is of interest to determine how cells acquire their unique spatiotemporal gene expression patterns. The wide variety of expression profiles established along the dorsoventral axis of the neural tube provides a great system to address this question. Recent advances in zebrafish transgenic technology, along with the phenomenon of a fish-specific genome duplication event, have been exploited here to provide an efficient way of identifying and characterizing gene regulatory elements. An identified neuronal-specific enhancer near the ladybird locus has been incorporated into a transgenic zebrafish strain driving fluorescent reporter protein expression in a subset of dorsal interneurons / Molecular Biology and Genetics
3

Understanding the Role of Prdm12b in Zebrafish Development

Yildiz, Ozge 07 March 2019 (has links)
Function of the adult nervous system relies on the appropriate establishment of neural circuits during embryogenesis. In vertebrates, the neurons that make up motor circuits form in distinct domains along the dorsoventral (DV) axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing the fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. We used CRISPR/Cas9 genome editing technology to generate the first germline mutants for the prdm12 gene and used this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal Mauthner cell-dependent escape response. Using cell culture-based luciferase reporter assays, we demonstrate that Prdm12b acts as transcriptional repressor, most likely by recruiting EHMT2/G9a. We also show that the Bhlhe22 TF binds to the Prdm12b zinc finger domain to form a Bhlhe22:Prdm12b complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. We conclude that prdm12b germline mutations produce a phenotype that is indistinguishable from that of morpholino-mediated loss of prdm12 function. In terms of prdm12b function, our results indicate that Prdm12b acts as transcriptional repressor and interacts with both EHMT2/G9a and Bhlhe22. However, bhlhe22 function is not required for eng1b expression in vivo, perhaps indicating that other bhlh genes can compensate for its loss during embryogenesis. Lastly, we do not find evidence for nkx6.1 and prdm12b acting as a repressive pair in the formation of the p1 domain – suggesting that prdm12b is not solely required to repress non-p1 fates, but is also needed to promote p1 fates.
4

Specification of Dorsal and Intermediate Telencephalic Character

Marklund, Matthew January 2005 (has links)
The telencephalon is the most highly evolved region of the vertebrate central nervous system (CNS). The major structures of the telencephalon - the cortex and basal ganglia – derive from the dorsally positioned pallium and the ventrally positioned subpallium, respectively. Differences in morphology, gene expression, and connectivity permit a subdivision of the developing telencephalon into domains that give rise to discrete regions of the adult brain. In mammals, the ventral region of the developing telencephalon can be subdivided into the medial (MGE) and lateral (LGE) ganglionic eminences. The dorsal midline cells give rise to the choroid plexus, and cells in the more lateral domain, the dorsal pallium, give rise to the cerebral cortex. Genetic studies have provided evidence that crossregulatory interactions between transcription factors contribute to the regionalization of the telencephalon. Less is known, however, about the secreted signals that induce the initial dorsoventral character of telencephalic cells. Sonic hedgehog (SHH) is required for the specification of ventral character along the entire anteroposterior (AP) extent of the developing CNS, including the telencephalon. We show that WNT activity imposes an early generic dorsal telencephalic character and that Fibroblast Growth Factor (FGF) act sequentially, and in concert with WNT, to specify cells of definitive dorsal telencephalic character. We also show that retinoic acid (RA)-mediated signaling induces intermediate character in telencephalic cells, and that FGFs maintain cells of ventral character by opposing RA activity. The following model emerges from these findings. At gastrula stages, most or all prospective telencephalic cells become specified as ventral cells in response to node-derived SHH signals. At neural fold- and early neural plate stages, cells in the prospective dorsal and intermediate regions of the telencephalon cells are exposed to WNT signaling that induce a generic dorsal character. The head ectoderm adjacent to the telencephalon then starts to express the retinoic acid producing enzyme, Raldh3, thus exposing telencephalic cells to RA signals. At the same time prospective dorsal cells start to express WNT signals. RA signaling appears to promote the generation of intermediate/prestriatal cells, whereas WNT signal suppress the actions of RA on dorsal cells, which therefore maintain their dorsal character. From the neural plate stage, prospective ventral 6 telencephalic cells are exposed to FGF8 derived from the anterior neural ridge, and FGF8 maintains ventral telencephalic character by opposing the influence of RA signals in ventral cells. At early neural tube stages, the domain of Fgf8 expression expands dorsally and FGF signals derived from the dorsal midline region induce definitive dorsal/precortical cells. In the intermediate region of the telencephalon cells evade high levels of WNT and FGF signals, resulting in an environment in which RA signaling is able to induce prestriatal character.

Page generated in 0.112 seconds