Spelling suggestions: "subject:"doubletalk detection"" "subject:"doubletalking detection""
1 |
Low-Complexity Algorithms for Echo Cancellation in Audio Conferencing SystemsSchüldt, Christian January 2012 (has links)
Ever since the birth of the telephony system, the problem with echoes, arising from impedance mismatch in 2/4-wire hybrids, or acoustic echoes where a loudspeaker signal is picked up by a closely located microphone, has been ever present. The removal of these echoes is crucial in order to achieve an acceptable audio quality for conversation. Today, the perhaps most common way for echo removal is through cancellation, where an adaptive filter is used to produce an estimated replica of the echo which is then subtracted from the echo-infested signal. Echo cancellation in practice requires extensive control of the filter adaptation process in order to obtain as rapid convergence as possible while also achieving robustness towards disturbances. Moreover, despite the rapid advancement in the computational capabilities of modern digital signal processors there is a constant demand for low-complexity solutions that can be implemented using low power and low cost hardware. This thesis presents low-complexity solutions for echo cancellation related to both the actual filter adaptation process itself as well as for controlling the adaptation process in order to obtain a robust system. Extensive simulations and evaluations using real world recorded signals are used to demonstrate the performance of the proposed solutions.
|
2 |
Implementation of the LMS and NLMS algorithms for Acoustic Echo Cancellationin teleconference systemusing MATLABNguyen Ngoc, Hung, Dowlatnia, Majid, Sarfraz, Azhar January 2009 (has links)
In hands-free telephony and in teleconference systems, the main aim is to provide agood free voice quality when two or more people communicate from different places.The problem often arises during the conversation is the creation of acoustic echo. Thisproblem will cause the bad quality of voice signal and thus talkers could not hearclearly the content of the conversation, even thought lost the important information.This acoustic echo is actually the noise which is created by the reflection of soundwaves by the wall of the room and the other things exist in the room. The mainobjective for engineers is the cancellation of this acoustic echo and provides an echofree environment for speakers during conversation. For this purpose, scientists designdifferent adaptive filter algorithms. Our thesis is also to study and simulate theacoustics echo cancellation by using different adaptive algorithms.
|
3 |
Implementation of the LMS and NLMS algorithms for Acoustic Echo Cancellationin teleconference systemusing MATLABNguyen Ngoc, Hung, Dowlatnia, Majid, Sarfraz, Azhar January 2009 (has links)
<p>In hands-free telephony and in teleconference systems, the main aim is to provide agood free voice quality when two or more people communicate from different places.The problem often arises during the conversation is the creation of acoustic echo. Thisproblem will cause the bad quality of voice signal and thus talkers could not hearclearly the content of the conversation, even thought lost the important information.This acoustic echo is actually the noise which is created by the reflection of soundwaves by the wall of the room and the other things exist in the room. The mainobjective for engineers is the cancellation of this acoustic echo and provides an echofree environment for speakers during conversation. For this purpose, scientists designdifferent adaptive filter algorithms. Our thesis is also to study and simulate theacoustics echo cancellation by using different adaptive algorithms.</p>
|
4 |
Nonlinear acoustic echo cancellationShi, Kun 10 November 2008 (has links)
The objective of this research is to presents new acoustic echo cancellation design methods that can effectively work in the nonlinear environment. Acoustic echo is an annoying issue for voice communication systems. Because of room acoustics and delay in the transmission path, echoes affect the sound quality and may hamper communications. Acoustic echo cancellers (AECs) are employed to remove the acoustic echo while keeping full-duplex communications. AEC designs face a variety of challenges, including long room impulse response, acoustic path nonlinearity, ambient noise, and double-talk situation. We investigate two parts of echo canceller design: echo cancellation algorithm design and control logic algorithm design. In the first part, our work focuses on the nonlinear adaptive and fast-convergence algorithms. We investigate three different structures: predistortion linearization, cascade structure, and nonlinear residual echo suppressor. Specifically, we are interested in the coherence function, since it provides a means for quantifying linear association between two stationary random processes. By using the coherence as a criterion to design the nonlinear echo canceller in the system, our method guarantees the algorithm stability and leads to a faster convergence rate. In the second part, our work focuses on the robustness of AECs in the presence of interference. With regard to the near-end speech, we investigate the double-talk detector (DTD) design in conjunction with nonlinear AECs. Specifically, we propose to design a DTD based on the mutual information (MI). We show that the advantage of the MI-based method, when compared with the existing methods, is that it is applicable to both the linear and nonlinear scenarios. With respect to the background noise, we propose a variable step-size and variable tap-length least mean square (LMS) algorithm. Based on the fact that the room impulse response usually exhibits an exponential decay power profile in acoustic echo cancellation applications, the proposed method finds optimal step size and tap length at each iteration. Thus, it achieves faster convergence rate and better steady-state performance. We show a number of experimental results to illustrate the performance of the proposed algorithms.
|
Page generated in 0.1105 seconds