• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cyclic loading analysis of doubler plate attachment details for steel moment resisting frames

Gupta, Umesh 08 October 2013 (has links)
The panel zone region in columns of seismic resistant steel moment frames are subject to very high shear forces during earthquake loading. Doubler plates are often used to increase the stiffness and strength of the panel zone. The methods and details used to attach doubler plates to columns can affect seismic performance of the panel zone and can also affect cost. The research reported in this thesis was aimed at developing an improved understanding of the advantages and disadvantages of various approaches for detailing and welding doubler plates to columns and how various details perform under cyclic inelastic loading. An extensive series of finite element analyses were conducted to study doubler plate attachment details. Both a shallow W14x398 column and a deep W40x264 column were studied in this research. This thesis provides a detailed description of the finite element modeling techniques used for the research and presents the results of an extensive series of analyses examining a wide variety of issues related to doubler plate design and detailing. / text
2

Preliminary analysis of doubler plate attachment details for steel moment resisting frames

Shirsat, Priyanka Saiprakash 08 July 2011 (has links)
In steel moment resisting frames, the region of the column located within the beam-column joint is known as the panel zone. When a steel moment resisting frame is subjected to lateral load, due to wind or seismic loads, the panel zone is subject to high shear. In some cases, the shear in the panel zone is sufficiently high that the panel zone must be reinforced to increase its stiffness and/or strength. This is normally accomplished by welding doubler plates to the column in the panel zone region. Doubler plates can be a costly feature in steel moment resisting frames because of the substantial amount of welding involved. There has been a large amount of past research that has investigated the required shear strength and stiffness of the panel zone region to establish a basis for sizing doubler plates. However, very little past research has investigated the details of attaching doubler plates to columns. These attachment details can have a significant influence on the structural performance of panel zone and on cost. The overall goal of this research was to conduct preliminary finite element studies that provide insight into several key issues related to the attachment of doubler plates to columns and to identify issues that require further research. The research involved finite element modeling of a simplified representation of beam-to-column joint subjected to monotonic loading. A total of twenty-one analysis cases with different doubler plate attachment details were studied. Issues that were investigated included the effect of welding different edges of the doubler plate to the column (horizontal edges only, vertical edges only, and all four sides), the effect of extending the doubler plate beyond the panel zone region, and the effect of providing two thinner doubler plates of equivalent total thickness on both sides of the column web instead of one thick doubler plate on one side of the column web. In addition, the forces developed in the doubler plate welds were computed from the finite element analysis and compared with current building code requirements for the design of these welds. Observations and preliminary design recommendations on these issues are provided in this thesis, along with recommendations for further research. / text
3

Finite element analysis of doubler plate attachment details and load paths in continuity plates for steel moment frames

Donkada, Shravya 19 June 2012 (has links)
This thesis presents results of research aimed at developing an improved understanding of the behavior of column panel zones reinforced with doubler plates in seismic resistant steel moment frames. A primary goal of the research was to develop data to support the development of improved design guidelines for welding doubler plates to columns, with and without the presence of continuity plates. The research addressed several issues and questions related to welding and detailing of doubler plates. This included evaluation of the effects of welding the top and bottom of the doubler plate in addition to the vertical edges, the effects of extending the doubler plate beyond the panel zone, and the impact of welding a continuity plate to a doubler plate. These issues were investigated through detailed finite element models of a simplified representation of the panel zone region, subjected to monotonic loading. The results of the research suggest that, in general, there is little benefit in welding the top and bottom edges of a doubler plate if the vertical edges are welded, particularly in terms of overall panel zone strength and stiffness. However, the top and bottom welds provide some benefit in reducing stresses on the vertical welds. The results also suggest that extending the doubler plate above and below the panel zone has little benefit for heavy columns of shallow depth, such as the W14x398 considered in this analysis. However, extending the doubler plate did result in approximately a 10-percent increase in panel zone strength for deeper columns, such as the W40x264 considered in this analysis. Finally, the results showed that welding a continuity plate directly to a doubler plate had no adverse effects on the doubler plate in terms of increased forces or stresses. Interestingly, welding the continuity plate to the doubler plate simply changed the load path for transfer of load from the beam flange to the column web and doubler plate, but did not change the stresses in the doubler plate. Further research is needed to validate these findings for more accurate representations of the panel zone region of the column and for cyclic loading. / text

Page generated in 0.058 seconds