• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 52
  • 52
  • 17
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Quantificação e modelagem de mecanismos de danos causados por Phakopsora euvitis e Plasmopara viticola em videira Vitis labrusca / Quantification and modelling of damage mechanisms caused by Phakopsora euvitis and Plasmopara viticola in Vitis labrusca

Nogueira Júnior, Antonio Fernandes 02 February 2017 (has links)
A viticultura no Brasil e no Estado de São Paulo encontra-se em expansão nos últimos 10 anos e a cv. Niagara Rosada (Vitis labrusca) se destaca como principal cultivar para produção de uvas para mesa. Essa cultivar é suscetível à várias doenças foliares, como a ferrugem (Phakopsora euvitis) e o míldio (Plasmopara viticola). Não existem estimativas quantitativas dos danos causados por essas doenças na cv. Niagara Rosada. Diante do exposto os objetivos desse trabalho foram quantificar os efeitos da ferrugem e do míldio nas trocas gasosas, nas limitações da fotossíntese, no acúmulo de biomassa, no acúmulo de carboidratos, e na produção da cv. Niagara Rosada e desenvolver um modelo de simulação para V. labrusca acoplado com os mecanismos de danos da ferrugem e míldio. Experimentos foram conduzidos, separadamente para cada doença, em condições controladas, em mudas inoculadas com diferentes concentrações de P. euvitis e P. viticola e em campo experimental. Medidas de trocas gasosas e curvas de resposta da taxa líquida de assimilação de CO2 ao aumento da concentração intercelular de CO2 (Ci) foram realizadas em mudas sadias e infectadas com P. euvitis e P. viticola. Teores de açúcares solúveis totais, sacarose e amido foram determinados em plantas sadias e inoculadas com os patógenos. P. euvitis e P. viticola reduziram a taxa fotossintética em plantas infectadas tanto na área da lesão como no tecido verde adjacente a lesão (lesão virtual). Valores do parâmetro β, indicativo da lesão virtual, foram de 5,7 e 2,9, respectivamente para P. euvitis e P. viticola. P. euvitis reduziu em 48%, 36% e 67% a atividade da Rubisco (Vcmax), a taxa máxima de transporte de elétrons usados para a regeneraração da RuBP (Jmax) e a condutância do mesofilo (gm), respectivamente, em folhas infectadas. A área foliar e biomassa de raízes em mudas inoculadas com P. euvitis foram reduzidas. Através de análises histopatológicas e da quantificação de amido nas folhas sadias e doentes foi possível observar o acúmulo de amido em regiões adjacentes às pústulas de P. euvitis. Mesmo em baixas severidades da ferrugem já se observam reduções no acúmulo de carboidratos em raízes. P. viticola reduziu Vcmax em 23,5 % em folhas infectadas comparadas às folhas sadias. P. viticola reduziu a biomassa de raízes e quantidade de carboidratos nas raízes de mudas doentes e de plantas no campo em ano de alta severidade da doença. Plantas no campo com sintomas míldio produziram em média 0,5 kg a menos do que plantas sadias e a principal causa da redução na produção foi a queda de bagas causada pela infecção de P. viticola nos cachos. Um modelo de simulação para Vitis labrusca foi desenvolvido, utilizando o software Stella®. A produção, partição e dinâmica da biomassa da videira foi simulada ao longo de 20 anos e os efeitos de P. euvitis e P. viticola na redução do tecido verde sadio da planta, na redução da eficiência fotossintética, no desvio de assimilados, na aceleração da senescência foliar e na queda de frutos foram inseridos no modelo. / Viticulture in Brazil and in the state of São Paulo has increased in the last 10 years and cv. Niagara Rosada (Vitis labrusca) is the main cultivar for the production of table grapes. This cultivar is susceptible to several foliar diseases, such as rust (Phakopsora euvitis) and downy mildew (Plasmopara viticola). There are no quantitative estimates of the damage caused by these pathogens in cv. Niagara Rosada. The objectives of this work were to quantify the effects of rust and downy mildew on gas exchange, photosynthesis limitations, biomass accumulation, carbohydrate accumulation and production of cv. Niagara Rosada and to develop a simulation model for V. labrusca coupled with damage mechanisms caused by rust and mildew. Experiments were conducted, independently for each disease, under controlled conditions in potted plants inoculated with different concentrations of P. euvitis and P. viticola and in experimental field, with natural occurrence of diseases. Measurements of gas exchange and response curves of photosynthetic rate to the increase of the intercellular CO2 concentration (Ci) were carried out in healthy plants and infected plants with P. euvitis and P. viticola. Total soluble sugars, sucrose and starch contents were determined in healthy plants and inoculated plants with the pathogens and kept under controlled conditions. P. euvitis and P. viticola reduced the photosynthetic rate in infected plants both in the area of the lesion and in the green tissue adjacent to the lesion (virtual lesion). Values of parameter β, indicative of the virtual lesion, were 5.8 and 2.9, respectively for P. euvitis and P. viticola. P. euvitis reduced the activity of Rubisco (Vcmax), rate of electrons transport contributing for the RuBP-regeneration (Jmax) and the conductance of mesophyll (gm), respectively, on infected leaves by 48%, 36% and 67%. The severity of P. euvitis reduced leaf area and biomass of plant roots. The histopathological analysis and starch quantification in the leaves allowed to observe starch accumulation in regions adjacent to the pustules of P. euvitis. Even in low disease severities, reductions in carbohydrates accumulation of in roots are already observed. P. viticola reduced Vcmax by 23.5% in infected leaves compared to healthy leaves. P. viticola reduced the root biomass and carbohydrate amounts in the roots of potted plants and plants in the field in the year of high disease severity. Field plants with mildew symptoms produced on average 0.5 kg less than healthy plantsand the main cause of reduction in production was the drop of berries caused by infection of P. viticola in the clusters. A simulation model for Vitis labrusca was developed using Stella ® software. The production, partitioning and dynamics of grapevine biomass was simulated over 20 years and the effects of P. euvitis and P. viticola on the reduction of healthy green plant tissue and photosynthetic efficiency, the assimilative sapper, leaf senescence acceleration and fruit drop were coupled in the model.
32

The biology of Pythium ultimum trow in an irrigated pea field / by A. Bainbridge

Bainbridge, Alexander January 1966 (has links)
Typescript / Includes bibliographical references / 134 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Pathology, 1966
33

Response to selection for downy mildew (Peronosclerospora sorghi) and maize streak virus resistance in three quality protein maize populations in Mozambique /

Mariote, David. January 2007 (has links)
Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2007. / Submitted to the African Centre for Crop Improvement. Full text also available online. Scroll down for electronic link.
34

Quantificação e modelagem de mecanismos de danos causados por Phakopsora euvitis e Plasmopara viticola em videira Vitis labrusca / Quantification and modelling of damage mechanisms caused by Phakopsora euvitis and Plasmopara viticola in Vitis labrusca

Antonio Fernandes Nogueira Júnior 02 February 2017 (has links)
A viticultura no Brasil e no Estado de São Paulo encontra-se em expansão nos últimos 10 anos e a cv. Niagara Rosada (Vitis labrusca) se destaca como principal cultivar para produção de uvas para mesa. Essa cultivar é suscetível à várias doenças foliares, como a ferrugem (Phakopsora euvitis) e o míldio (Plasmopara viticola). Não existem estimativas quantitativas dos danos causados por essas doenças na cv. Niagara Rosada. Diante do exposto os objetivos desse trabalho foram quantificar os efeitos da ferrugem e do míldio nas trocas gasosas, nas limitações da fotossíntese, no acúmulo de biomassa, no acúmulo de carboidratos, e na produção da cv. Niagara Rosada e desenvolver um modelo de simulação para V. labrusca acoplado com os mecanismos de danos da ferrugem e míldio. Experimentos foram conduzidos, separadamente para cada doença, em condições controladas, em mudas inoculadas com diferentes concentrações de P. euvitis e P. viticola e em campo experimental. Medidas de trocas gasosas e curvas de resposta da taxa líquida de assimilação de CO2 ao aumento da concentração intercelular de CO2 (Ci) foram realizadas em mudas sadias e infectadas com P. euvitis e P. viticola. Teores de açúcares solúveis totais, sacarose e amido foram determinados em plantas sadias e inoculadas com os patógenos. P. euvitis e P. viticola reduziram a taxa fotossintética em plantas infectadas tanto na área da lesão como no tecido verde adjacente a lesão (lesão virtual). Valores do parâmetro β, indicativo da lesão virtual, foram de 5,7 e 2,9, respectivamente para P. euvitis e P. viticola. P. euvitis reduziu em 48%, 36% e 67% a atividade da Rubisco (Vcmax), a taxa máxima de transporte de elétrons usados para a regeneraração da RuBP (Jmax) e a condutância do mesofilo (gm), respectivamente, em folhas infectadas. A área foliar e biomassa de raízes em mudas inoculadas com P. euvitis foram reduzidas. Através de análises histopatológicas e da quantificação de amido nas folhas sadias e doentes foi possível observar o acúmulo de amido em regiões adjacentes às pústulas de P. euvitis. Mesmo em baixas severidades da ferrugem já se observam reduções no acúmulo de carboidratos em raízes. P. viticola reduziu Vcmax em 23,5 % em folhas infectadas comparadas às folhas sadias. P. viticola reduziu a biomassa de raízes e quantidade de carboidratos nas raízes de mudas doentes e de plantas no campo em ano de alta severidade da doença. Plantas no campo com sintomas míldio produziram em média 0,5 kg a menos do que plantas sadias e a principal causa da redução na produção foi a queda de bagas causada pela infecção de P. viticola nos cachos. Um modelo de simulação para Vitis labrusca foi desenvolvido, utilizando o software Stella®. A produção, partição e dinâmica da biomassa da videira foi simulada ao longo de 20 anos e os efeitos de P. euvitis e P. viticola na redução do tecido verde sadio da planta, na redução da eficiência fotossintética, no desvio de assimilados, na aceleração da senescência foliar e na queda de frutos foram inseridos no modelo. / Viticulture in Brazil and in the state of São Paulo has increased in the last 10 years and cv. Niagara Rosada (Vitis labrusca) is the main cultivar for the production of table grapes. This cultivar is susceptible to several foliar diseases, such as rust (Phakopsora euvitis) and downy mildew (Plasmopara viticola). There are no quantitative estimates of the damage caused by these pathogens in cv. Niagara Rosada. The objectives of this work were to quantify the effects of rust and downy mildew on gas exchange, photosynthesis limitations, biomass accumulation, carbohydrate accumulation and production of cv. Niagara Rosada and to develop a simulation model for V. labrusca coupled with damage mechanisms caused by rust and mildew. Experiments were conducted, independently for each disease, under controlled conditions in potted plants inoculated with different concentrations of P. euvitis and P. viticola and in experimental field, with natural occurrence of diseases. Measurements of gas exchange and response curves of photosynthetic rate to the increase of the intercellular CO2 concentration (Ci) were carried out in healthy plants and infected plants with P. euvitis and P. viticola. Total soluble sugars, sucrose and starch contents were determined in healthy plants and inoculated plants with the pathogens and kept under controlled conditions. P. euvitis and P. viticola reduced the photosynthetic rate in infected plants both in the area of the lesion and in the green tissue adjacent to the lesion (virtual lesion). Values of parameter β, indicative of the virtual lesion, were 5.8 and 2.9, respectively for P. euvitis and P. viticola. P. euvitis reduced the activity of Rubisco (Vcmax), rate of electrons transport contributing for the RuBP-regeneration (Jmax) and the conductance of mesophyll (gm), respectively, on infected leaves by 48%, 36% and 67%. The severity of P. euvitis reduced leaf area and biomass of plant roots. The histopathological analysis and starch quantification in the leaves allowed to observe starch accumulation in regions adjacent to the pustules of P. euvitis. Even in low disease severities, reductions in carbohydrates accumulation of in roots are already observed. P. viticola reduced Vcmax by 23.5% in infected leaves compared to healthy leaves. P. viticola reduced the root biomass and carbohydrate amounts in the roots of potted plants and plants in the field in the year of high disease severity. Field plants with mildew symptoms produced on average 0.5 kg less than healthy plantsand the main cause of reduction in production was the drop of berries caused by infection of P. viticola in the clusters. A simulation model for Vitis labrusca was developed using Stella ® software. The production, partitioning and dynamics of grapevine biomass was simulated over 20 years and the effects of P. euvitis and P. viticola on the reduction of healthy green plant tissue and photosynthetic efficiency, the assimilative sapper, leaf senescence acceleration and fruit drop were coupled in the model.
35

Virulence and Multiple infections of Hyaloperonospora arabidopsidis (Gäum.) Göker, Riethm., Voglmayr, Weiss & Oberw. on Arabidopsis thaliana (L.) Heyhn. / Virulence et infections multiples de Hyaloperonospora arabidopsidis (Gäum.) Göker, Riethm., Voglmayr, Weiss & Oberw. chez Arabidopsis thaliana (L.) Heyhn.

Falab, Shanerin 03 August 2018 (has links)
Les infections multiples sont courantes dans la nature et sont considérées comme très importantes dans l'évolution des caractéristiques biologiques des parasites. Théoriquement, les infections multiples devraient entraîner une évolution de la virulence à la fois comme stratégie adaptative et comme stratégie plastique. Dans cette thèse, j'utilise Hyaloperonospora arabidopsidis, un parasite naturel d'Arabidopsis thaliana, qui s'est avéré pratique pour des études en écologie évolutive, pour étudier: i) les infections multiples consécutives à la co-inoculation et à l'inoculation séquentielle; succès de l'infection et succès de transmission d’une souche individuelle (génotypage par PCR) et des phénotypes d'infection, y compris virulence entre inoculation unique et mixte, iii) effet du délai d'inoculation et d'ordre des souches inoculées sur les phénotypes d'infection et le succès de l'infection individuelle. Ici, j'ai trouvé une fréquence plus élevée de co-infection à la suite de l'inoculation séquentielle que à la suite de la co-inoculation des mêmes combinaisons de souches. L'inoculation mixte de certaines combinaisons de souches a entraîné une modification des phénotypes d'infection, souvent avec un succès d'infection plus faible chez certaines souches à la suite des inoculations en mélanges qu’en inoculation simple. Ce résultat implique une interférence entre les souches dans l'inoculum mixte. La virulence globale de l'infection après l'inoculation mixte n'était pas toujours supérieure à celle de l'infection à souche simple. De plus, les souches uniques utilisées dans ces expériences ne différaient pas toujours les unes des autres en termes de virulence. Le seul test d'un mélange de génotypes à trois souches a provoqué une virulence globale plus élevée que les trois infections à souche unique respectives. Une plus grande virulence globale dans ce cas pourrait être due à la plasticité des souches parasitaires inoculées, à la réponse à la présence d'autres souches dans l'inoculum mixte ou à l'effet de multiples souches supprimant le système de défense de l'hôte. Lorsque les souches ont été inoculées de manière séquentielle et non ensemble, le succès de l'infection de souches individuelles différait entre les différents ordres d'inoculation, ce qui pourrait être dû à des effets indirects via le système de défense de l'hôte. En résumé, l'inoculation séquentielle a semblé réduire l'interférence entre les souches parasitaires, avec un effet de décalage temporel et d'ordre de la souche inoculée sur le succès de l'infection de souches individuelles. Une interférence dans un inoculum mixte peut générer différents succès d'infection et phénotypes d'infection à partir des inoculations individuelles respectives. J'ai trouvé un cas évident de virulence globale plus élevée dans les infections causées par des inoculations mixtes. Par conséquent, une virulence globale plus élevée peut se produire malgré le fait que nous ne trouvions pas de meilleures performances de génotypes plus virulents dans des infections à la suite d'inoculations mixtes. Ainsi, ces résultats ne permettent pas de prédire l’évolution de la virulence supérieure parmi ces combinaisons de souches testées. Cependant, la plasticité des phénotypes des souches inoculées dans l'inoculum mixte a généré une virulence globale de l'infection plus élevée. Ces résultats peuvent aider à comprendre comment les génotypes de parasites répondent aux infections mixtes. / Multiple infections are common in nature, and are considered very important in the evolution of parasite life-history traits. Theoretically, multiple infections should lead to evolution of higher levels of virulence both as an adaptive and as a plastic strategy. In this thesis I use Hyaloperonospora arabidopsidis, a natural parasite of Arabidopsis thaliana, which has proven a useful tool for unlocking some evolutionary ecology questions, to investigate: i) multiple infections following co-inoculation and sequential inoculation, ii) number of infected plants, infection success and transmission success of individual strain (genotyping via PCR), and infection phenotypes including virulence between after single- and mixed inoculation, iii) effect of time lag of inoculation and order of inoculated strain on infection phenotypes and individual strain infection success. Here I found that sequential inoculation contributed higher frequency of co-infection than co-inoculation of the same strain combinations. Mixed inoculum of some strain combinations led to modification of overall infection phenotypes, often with poorer infection success of individual strains compared with that of the more infectious strains. This result implies interference between strains in mixed inoculum. Overall virulence of infection after mixed inoculation was not always higher than that of single strain infection. Furthermore the single strains used in these experiments did not always differ from each other in virulence. The one test of a three-strain mixture of genotypes caused higher overall virulence than the three respective single strain infections. Higher overall virulence in this case might be caused by plasticity of inoculated parasite strains reponse to the presence of other strains in mixed inoculum or an effect of multiple strains suppressing the host defence system. When strains were inoculated sequentially instead of together, infection success of individual strains differed between different orders of inoculation, which could be due to indirect effects via the host defence system. In summary, sequential inoculation seemed to reduce interference between parasite strains, with effect of time lag and order of inoculated strain on infection success of individual strains. Interference in mixed inoculum can generate different infection successs and infection phenotypes from the respective single inoculations. I found one clear case of higher overall virulence in infections caused by mixed inoculations. Thus higher overall virulence can occur despite our not finding higher performance of more virulent genotypes from infections following mixed inoculations. Thus these finding do not predict the evolution of higher virulence among these strain combinations tested. However, plasticity of phenotypes of inoculated strains in mixed inoculum did generate higher overall virulence of infection. These findings can help to understand how the parasite genotypes respond to in mixed infections.
36

Identification Of Downy Mildew Resistance In Wild Arugula And Evaluation Of Downy Mildew Causing Pathogens And Management Practices

Blair, Reilly B 01 June 2024 (has links) (PDF)
Downy mildew has been a potentially devastating constraint to crop production within the Brassicaceae family worldwide (CABI, 2022) and on the Central Coast of California (Smukler, et al, 2008; Koike, et al. 2007). Downy mildew is a foliar disease, caused by the pathogens in the Hyaloperonospora genus on plants within the Brassicaceae family (Goker, et al, 2009). Downy mildew is a disease that is common in region of the world with Coastal climates that provide humidity and moderate temperatures (Sarahan, et al, 2017). Crops within the Brassicaceae family maintain a predominant role in agricultural systems worldwide (Cartea, et al, 2011) and on the Central Coast of California, in Monterey, San Luis Obispo, Santa Cruz, San Benito, and Ventura Counties (Hidalgo, et al, 2022; Settevendemie, et al, 2022; Sanford, et al, 2022; Griffin, et al, 2022; Chang, et al, 2022; Williams, et al, 2022). The crop production within the Brassicaceae family includes broccoli, cabbage, and cauliflower, and the spring mix production of wild arugula, cultivated arugula, and baby kale. In the first study, an in-lab screening of wild arugula (Diplotaxis tenuifolia) for downy mildew resistance was conducted to identify accessions that contain potential resources of resistance to Hyaloperonospora diplotaxidis. The germplasm of 199 wild arugula accessions was grown out under greenhouse conditions and inoculated with a v single isolate of H. diplotaxidis. A subset of 40 accessions of wild arugula were further inoculated with an additional three isolates of H. diplotaxidis and the ten most resistant accessions were selected for further inoculations. The inoculations of the final subset of ten accessions with the same three isolates were replicated an additional two times. When a factorial ANOVA was conducted to test the interaction between the isolate and accession used, it was found that the impact of the accession on disease incidence was independent from the isolate (P=0.993). Three accessions, 185, 79, and 17 were identified as a potential source of resistance to the isolates utilized in this study, for maintaining a disease incidence below 1%. To compare the results found in the in-lab resistance screening, a field trial was conducted with a subset of wild arugula accessions with diverse reactions to downy mildew. When a regression was conducted comparing the disease incidence under field and lab conditions, the R2 value was found to be 0.37. A second study was conducted to characterize the genetic, morphological, and host range diversity of downy mildew causing pathogens in the Hyaloperonospora genus of hosts in the Brassicaceae family. An isolate collection of approximately 40 isolates of Hyaloperonospora spp. was established and the phylogenetic relationships of these isolates were analyzed by creating two phylogenetic trees using their cox2 mtDNA and ITS rDNA sequences. The H. brassicae and H. diplotaxidis isolates from this study formed separate monophyletic groups in both the cox2 mtDNA and ITS rDNA phylogenetic analyses. When the host range of H. brassicae and H. diplotaxidis were characterized by inoculating a genetically and morphologically diverse set of four host plant species, the H. brassicae and H. diplotaxidis were found to have distinct host ranges. The H. brassicae isolate was found to be parasitic of all B. oleracea morphotypes including broccoli, cabbage, kale, kohlrabi, and ornamental cabbage. The H. diplotaxidis isolate was found to only be parasitic on wild arugula, not cultivated arugula, wild mustard, or any of the B. oleracea morphotypes. The difference between sporangia of H. brassicae and H. diplotaxidis were found to be statistically significant, where the sporangia of H. brassicae were nearly circular and the sporangia of H. diplotaxidis were closer to an oval.
37

Sistemas de alerta fitossanitário para o controle do míldio em vinhedos conduzidos sob coberturas plásticas no Noroeste Paulista / Disease warning systems for downy mildew control in vineyards cultivated under plastic coverings in Northwestern São Paulo, Brazil

Holcman, Ester 22 April 2014 (has links)
A região noroeste do estado de São Paulo é um importante pólo produtor de uvas de mesa, porém possui condições ambientais muito propícias à ocorrência de doenças fúngicas durante todo o ciclo da videira. Alternativas como o uso de coberturas plásticas e de sistemas de alerta fitossanitário têm se mostrado bastante vantajosas para tal, porém, ainda com poucos estudos sobre isso na região. Deste modo, objetivou-se com este estudo avaliar a eficácia de sistemas de alerta fitossanitário no controle do míldio (Plasmopara viticola) em videiras cultivadas sob coberturas plásticas, e, consequentemente, na produtividade e na qualidade das uvas, no Noroeste Paulista. O experimento foi realizado na Estação Experimental de Viticultura Tropical (EVT) da Embrapa Uva e Vinho, localizada no município de Jales, SP, durante os anos de 2012 e 2013. Foram conduzidas três ruas de 120 m de videiras, cultivar apirênica \'BRS Morena\', em espaçamento de 3,0 m entre plantas. Metade do vinhedo foi coberto com filme plástico de polipropileno trançado sobre estrutura metálica em forma de arco (PPT) e a outra metade com tela preta, com 18% de sombreamento (TP18%). O delineamento experimental foi o de blocos casualizados compostos por cinco tratamentos, com seis repetições por ambiente coberto. Os tratamentos foram determinados a partir de diferentes manejos de controle do míldio da videira: TE - Testemunha (sem controle fitossanitário para o míldio); CA - Controle convencional (calendário); BA - Alerta fitossanitário denominado \'Regra 3-10\' (BALDACCI et al., 1947); MA25 - Alerta fitossanitário com eficiência de infecção baixa - i0 > 25% (MADDEN et al., 2000); e MA75 - Alerta fitossanitário com eficiência de infecção alta - i0 >75% (MADDEN et al., 2000). De acordo com os resultados, sob o PPT a transmissividade média da radiação solar global foi de 82,4% em 2012 e 67,3% em 2013 e sob a TP18%, da ordem de 90% nos dois anos estudados. Os ambientes sob as coberturas apresentaram temperaturas máximas do ar superiores aos valores observados a céu aberto, sendo as diferenças da ordem de 0,7 °C sob ao PPT e de 1,0 °C sob a TP18%. Sob o PPT, a duração do período de molhamento foliar foi 34% superior do que sob TP18%. Os tratamentos baseados nos sistemas de alertas fitossanitários (BA, MA25 e MA75) revelaram níveis baixos de severidade do míldio da videira sob PPT, semelhantes aos verificados no tratamento com base no calendário (CA). Os tratamentos BA, MA25 e MA75 sob TP18% indicaram um número de pulverizações similar aos realizados sob o PPT, porém foram menos eficientes em relação a CA. Houve uma significativa redução no número de pulverizações entre o tratamento CA e os tratamentos BA, MA25 e MA75, da ordem de 70%. As videiras, sob o PPT, pulverizadas com base em BA, MA25 e MA75 apresentaram características produtivas e qualitativas semelhantes às das videiras pulverizadas de acordo com CA. Conclui-se que o cultivo de videiras sob cobertura plástica de polipropileno, aliado à adoção de sistemas de alertas fitossanitários, resultou em excelentes níveis de controle do míldio da videira no Noroeste Paulista. / The Northwest region of the state of São Paulo is one of the main producers of table grapes in Brazil, however has a very favorable environmental conditions to fungal diseases during the growing season. The use of disease warning systems and plastic covers are promising alternatives for disease control, but there are not many researches about that in this region of the state. Thus, the objective of this study was to evaluate the efficacy of warning systems for managing downy mildew (Plasmopara viticola) in vineyards cultivated under plastic coverings, and, consequently, their impact on vine productivity and quality, in the northwest region of São Paulo State, Brazil. The experiment was carried out at the EMBRAPA - Tropical Viticulture Experimental Station (EVT/Embrapa Uva e Vinho), located in Jales, SP, Brazil. Three rows of 120 m of the seedless grape cultivar \'BRS Morena\', spaced with 3.0 m between plants were conducted during 2012 and 2013 growing seasons. Half of the vineyard was covered with braided polypropylene plastic film installed over a metallic arc-shaped structure (PPT) and the other half with black screen, with 18% of shading (TP18%). The experimental design was randomized blocks composed of five treatments, with six repetitions per covered environment. The treatments were defined by the different grapevine downy mildew management : (TE) Control (no sprays against downy mildew); (CA) Conventional control (calendar); (BA) Warning system \'Rule 3-10\' (BALDACCI et al., 1947); (MA25) Warning system with low-infection efficiency - i0 > 25% (MADDEN et al., 2000); and (MA75) Warning system with high infection efficiency - i0 > 75% (MADDEN et al., 2000). According to the results, under the PPT the average global solar radiation transmissivity was 82.4% in 2012 and 67.3% in 2013 and under TP18%, around 90% along the two growing seasons. The microclimate under the plastic covers showed maximum air temperatures higher than the values observed in the external environment, and the differences was around 0.7 °C under the PPT and 1.0 °C under TP18%. In the PPT, leaf wetness duration (LWD) was about 34% higher in relation to the TP18%. The treatments based on warning systems (BA, MA25 and MA75) revealed low levels of severity of grapevine downy mildew under PPT, similar to those observed in the treatment based on a calendar spray (CA). The treatments BA, MA25 and MA75 under TP18% indicated a number of sprays similar to those obtained under the PPT, but less efficient in relation to the CA. There was a significant reduction in the number of sprays between the CA and BA, MA25 and MA75 treatments, about 70%. The vines under the PPT and sprayed based on BA, MA25 and MA75 had productive and quality characteristics similar to those sprayed according to the CA. It is concluded that the association of cultivation under polypropylene plastic cover and the use of disease warning systems resulted in excellent levels of downy mildew control in vineyards in the Northwest region of São Paulo state.
38

Investigation of heterotic patterns and genetic analysis of Downy mildew resistance in Mozambican lowland maize (Zea mays L.) germplasm.

Fato, Pedro. January 2010 (has links)
In Southern Africa and Mozambique, tropical lowland accounts for 22% and 65%, respectively, of area under maize production, but grain yield is compromised by downy mildew disease (DM, which is caused by Peronosclerospora sorghi (Weston and Uppal) Shaw), and lack of appropriate varieties, especially hybrids. Among other factors, productivity can be enhanced by deploying DM resistant hybrids, which are higher yielding than open pollinated varieties. Development of a viable hybrid-breeding programme requires knowledge of genetic effects governing yield and DM resistance in inbreds, and effective germplasm management requires heterotic groups and heterotic patterns to be established. In addition, knowledge of farmer-preferred traits is required. Currently, such information is not available to the hybrid-breeding programme in Mozambique. The objectives of this study were, therefore; i) to identify farmers’ preferred variety traits and major production constraints, ii) to determine combining ability effects of inbred maize S4 lines for grain yield and DM resistance, iii) to determine heterotic groups and heterotic patterns among the elite inbred maize lines, and iv) to investigate gene effects governing resistance to DM in breeding source inbred maize lines from the breeding programme in Mozambique. During 2007/08, 142 households were involved in a survey conducted in three districts representing two maize agro-ecological zones in Mozambique. Formal surveys and informal farmer-participatory methods were employed and data subjected to analysis in the SPSS computer programme. Results indicated that there was a low utilization of improved varieties, especially hybrids, with grain yield estimated at 0.7 t ha-1. Farmers were aware of the major production constraints and could discriminate constraints according to their importance for their respective communities. For the lowland environment, farmers identified downy mildew, drought, and cutworm and stem borer damage as the main constraints. In contrast, for the high altitude environments, they ranked ear rot, seed and fertilizer availability, turcicum leaf blight, grey leaf spot diseases and low soil fertility among the major constraints limiting productivity. The most important variety selection criteria were grain yield, short growth cycle, white and flint grain with stress tolerance to drought, low soil fertility, diseases, and grain weevils. These afore mentioned traits, would be priority for the breeding programmes for the lowland and mid altitude environments in Mozambique. To determine combining ability for downy mildew resistance, heterotic groups and heterotic patterns, two testers (open-pollinated varieties) ZM523 (Z) and Suwan-1 (S), were crossed with 18 lines to generate 36 top crosses for evaluation. Crosses were evaluated at two sites under DM. Preponderance of GCA effects indicated that additive gene effects were more important than non-additive gene effects in governing both grain yield and downy mildew resistance in the new maize lines. Based on specific combining ability (SCA) data, lines for yield were classified into two heterotic groups, S and Z; whereas based on heterosis data, lines were fitted into three heterotic groups (S, Z and SZ). Further heterotic patterns and gene action for yield were determined by subjecting nine inbred lines and the two testers, S and Z, to an 11 x 11 diallel-mating scheme. The diallel crosses, three hybrid checks and the two testers were evaluated in six environments in Mozambique. Results revealed that non-additive gene effects were predominant for yield components. In addition, high levels of heterosis for yield was observed and three heterotic groups identified (Z, S and S/Z), and five exceptional heterotic patterns among the inbred elite maize lines were observed. Topcrosses with yield levels comparable to single cross hybrids were also identified, and these would be advanced in the testing programme with potential for deployment as alternative cheaper and sustainable technology to conventional hybrids for the poor farming communities in Mozambique. To determine gene effects for downy mildew resistance in potential breeding lines, two maize populations were derived from crosses between downy mildew susceptible line LP67, and resistant lines DRAC and Suwan-L1. To generate F2 and backcross progenies (BCP1 and BCP2), F1 progenies were self-pollinated and simultaneously crossed to both inbred parents (P1 and P2). All the six generations (P1, P2, F1, F2, BCP1, and BCP2) of the populations were evaluated at two sites under downy mildew infection. A generation mean analysis was performed in SAS. It was revealed that downy mildew resistance was influenced by genes with additive and dominance effects, plus different types of epistatic effects such as additive x additive, and dominance x dominance. Overall results indicated that genes with predominantly non-additive effects controlled resistance in DRAC, whereas resistance in Suwan-L1 was largely influenced by additive gene effects. These findings have serious implications on the effective use of these downy mildew resistance sources in breeding programmes that aim to generate varieties with downy mildew resistance. Overall, results suggested that inbreeding and selection within heterotic groups, followed by hybridization between inbreds within and across heterotic groups would be effective to generate new hybrids. The breeding programme will consider development of conventional hybrids, such as single crosses and three way crosses, and top crosses. Implications of the findings of the study and recommendations are discussed. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
39

Marker-assisted selection for maize streak virus resistance and concomitant conventional selection for Downy Mildew resistance in a maize population.

Mafu, Nothando Fowiza. January 2013 (has links)
Maize streak virus (MSV) disease, transmitted by leafhoppers (Cicadulina mbila, Naude), and maize downy mildew (DM) disease caused by Peronosclerospora sorghi (Weston and Uppal) Shaw, are major contributing factors to low maize yields in Africa. These two diseases threaten maize production in Mozambique, thus the importance of breeding Mozambican maize varieties that carry resistance to these diseases. Marker-assisted selection (MAS) was employed to pyramid MSV and DM disease resistant genes into a single genetic background through simultaneous selection. Firstly, it was essential to determine the genetic diversity of MSV disease resistance in 25 elite maize inbred lines to aid in the selection of suitable lines for the introgression of the msv1 gene; and subsequently, to introduce the msv1 resistance gene cluster from two inbred lines, CM505 and CML509, which were identified as the ideal parental lines for the introgression of MSV disease resistance into a locally adapted Mozambican inbred line LP23 that had DM background resistance. Pyramiding the resistance genes by the use of simple sequence repeat (SSR) molecular markers to track the MSV gene cluster was investigated in 118 F3 progeny derived from crosses of CML505 x LP23 and CML509 x LP23. High resolution melt (HRM) analysis using the markers umc2228 and bnlg1811 detected 29 MSV resistant lines. At the International Maize and Wheat Improvement Centre (CIMMYT) in Zimbabwe, MSV disease expression of the 118 F3 progeny lines was assessed under artificial inoculation conditions with viruliferous leafhoppers and the effect of the MSV disease on plant height was measured. Thirty-seven family lines exhibited MSV and DM (DM incidence ≤50) disease resistance. Individual plants from a total of 41 progeny lines, that exhibited MSV disease severity ratings of 2.5 or less in both locations within each of the F3 family lines, were selected based on the presence of the msv1 gene based on SSR data, or field DM disease resistance, and were then advanced to the F4 generation to be fixed for use to improve maize hybrids in Mozambique for MSV resistance. Simultaneous trials were run at Chokwe Research Station in Mozambique for MSV and DM disease assessment, under natural and artificial disease infestation, respectively. Thus the MSV and DM genes were effectively pyramided. Lines with both MSV and DM resistance were advanced to the F4 generation and will be fixed for use to improve maize hybrids in Mozambique for MSV and DM resistance, which will have positive implications on food security in Mozambique. This research discusses the results of combined selection with both artificial inoculation and the three selected SSR markers. It was concluded that a conventional maize breeder can successfully use molecular markers to improve selection intensity and maximise genetic gain. / Thesis (M.Sc.Agric)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
40

Netikrosios miltligės (Peronospora viciae (Berk) Caspary) įtaka miškinio pelėžirnio (Lathyrus sylvestris L.) morfologiniams ir sėklų produktyvumo rodikliams / Influence of downy mildew (Peronospora viciae (Berk) Caspary) on mrphological and seed productivity parameters of flat pea (Lathyrus sylvestris L.)

Reipaitė, Aurelija 13 June 2014 (has links)
Baigiamajame darbe 2012–2013 m. tirta netikrosios miltligės (Peronospora viciae (Berk) Caspary) įtaka skirtingos geografinės kilmės miškinio pelėžirnio (Lathyrus sylvestris L.) cenopopuliacijų morfologiniams ir sėklų produktyvumo rodikliams. Darbo objektas – iš skirtingų Lietuvos rajonų surinktos dvylika miškinio pelėžirnio cenopopuliacijų, augančių vienodos agrotechnikos sąlygomis. Darbo tikslas – įvertinti netikrosios miltligės įtaką skirtingų cenopopuliacijų miškinio pelėžirnio morfologinias ir sėklų produktyvumo rodikliams. Darbo metodai – įvertinti skirtingų miškiniopelėžirnio cenopopuliacijų stiebo aukštis, žiedynų, ankščių, sėklapradžių ankštyje skaičius, ankšties produktyvumo, vieno stiebo sėklų produktyvumas. Atsparumas netikrajai miltligei įvertintas 5 balų sistema, atsparumo įtaka ankščiau išvardintiems rodikliams įvertinta naudojantis programa STATISTIKA 8. Rezultatai. Tyrimo metų duomenimis, miškinio pelėžirnio stiebo aukščiui, žiedynų skaičiui ir ankščių produktyvumui lemiamą įtaką turėjo cenopopuliacijos genotipas ir tyrimo metų meteorologinės sąlygos. Didesnis miškinio pelėžirnio stiebo aukštis teigiamai įtakojo ankščių (r=0,7539) ir sėklų skaičių (r = 0,6223). Stabiliausias iš tirtų rodiklių tyrimo metais buvo sėklapradžių (vid. 12,4 vnt.) skaičius ankštyje (V = 4,7), labiliausi – ankščių (vid. 21,6 vnt.; V = 36,5) ir subrandintų sėklų skaičiaus (vid. 151,1 vnt., V = 39,8) rodikliai. Miškinio pelėžirnio atsparumas netikrajai miltligei įtakojo... [toliau žr. visą tekstą] / Influence of downy mildew (Peronospora viciae (Berk) Caspary) on morfological and seed productivity parameters of different geographical origins flat pea (Lathyrus sylvestris L.) cenopopulations have been investigated in 2012-2013. Subject of the research – 12 flat pea (Lathyrus sylvestris L.) cenopopulations from different geographical origins of Lithuania, grown on equal agrotechnic conditions. Aim of the research – estimate an influence of downy mildew on flat pea morfological and seed produktivity parameters. Methodology – to evaluate stem height, number of inflorescence, pods, ovules per pod and pod productivity, one stalk of seed productivity of different flat pea coenopopulations. Resistance to downy mildew is rated by 5-point scale, impact of resistance on above listed parameters estimated using the statistics program STATISTICA 8. Results. The research data shows, that genotype of coenopopulation and meteorological conditions had a decisive influence on flat pea stem height, number of inflorescences and pod productivity. Height of stem influenced positively pod (r = 0,7539 ) and seed number (r = 0,6223 ). The most stabile from the investigated parameters were number of ovules (mean 12,4 pcs.) per pod (V = 4,7 ), most labile – number of pods (mean 21,6 pcs., V = 36,5 ) and the number of mature seeds (mean 151,1 pcs., V = 39.8). The flat pea resistance to downy mildew influenced such parameters as the number of pods, number ovules in pod and especially stem seeds... [to full text]

Page generated in 0.0243 seconds