• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 721
  • 457
  • 118
  • 110
  • 52
  • 40
  • 40
  • 40
  • 40
  • 40
  • 37
  • 26
  • 25
  • 17
  • 12
  • Tagged with
  • 1837
  • 446
  • 444
  • 382
  • 363
  • 222
  • 214
  • 163
  • 147
  • 146
  • 144
  • 104
  • 103
  • 93
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

Effects of anthropogenic activities on snow distribution, and melt in an urban environment

Matheussen, Bernt Viggo January 2004 (has links)
<p>In many parts of the world snow melt runoff influence discharge from combined sewer overflows (CSO) and flooding in urban drainage systems. Despite this, urban snow hydrology is a field that has received little attention from the urban drainage community. The objectives of this research were to better understand urban snow hydrology and through field work and hydrological modelling quantify effects of anthropogenic activities (AA) on snow distribution, and melt in an urban environment. This means in principle how the presence (design geometry) and operation of roads and buildings influence the snow distribution and melt in urban areas. The Risvollan urban catchment (20 ha) located in Trondheim, Norway, was used as a study area. A literature review of urban snow hydrology was also carried out.</p><p>A gridded urban hydrology model (GUHM) was developed as part of the study. The principal idea of the GUHM is to subdivide an urban catchment into orthogonal equal area grid cells. The snow routine in the GUHM is based on an energy balance approach, which together with a soil-runoff routine is used to calculate a time series of rain, snow water equivalent (SWE), snow melt, and runoff, for each grid cell. In GUHM, processes such as snow clearing of roads, locally low albedos, heat/shadowing from buildings, and effects of slope and aspect are included in the model structure.</p><p>A technique for observing time series of snow covered area (SCA) for an urban catchment is presented. The method is based on image processing and neural network technology to calculate SCA from a time series of images taken from a tall building in the Risvollan catchment. It was shown that SCA on roads and roofs in general becomes more rapidly snow free during melt periods compared to the park areas of the Risvollan catchment. This can be explained by snow clearing of roads, snowdrift from roofs and high snow melt rates on roofs and roads. The high melt rates was attributed to locally low albedos in vicinity to roads, rooftop snow packs exposure to wind and solar radiation, in addition to anthropogenic heat release from the roofs themselves.</p><p>Field observations of SWE were carried out in the Risvollan catchment and it was shown that areal mean SWE located on/or nearby roads and buildings were significantly lower during mid and end of the winter, than in park areas. This can be attributed to higher melt rates caused by AA. A time series of SCA and SWE was obtained through field work for the period from 2000 to 2003 in the Risvollan catchment.</p><p>The GUHM was applied and calibrated for the Risvollan catchment for a three year period. Two seasons were used as validation period. Comparison between the simulated and observed SWE, SCA and runoff data showed that the GUHM was able to simulate snow accumulation and melt for whole seasons with short time resolution (1 hour) satisfactory.</p><p>The GUHM was used to quantify effects of AA on snow distribution and melt for six different land use scenarios in the Risvollan catchment for the period June 1998 to June 2003. The modelling results showed that when the area coverage of buildings and roads increased, the SCA and SWE more rapidly decreased during melt periods. Because of this more runoff will be produced in the early winter season (Jan-March) compared to if the catchment had been covered with only sparsely vegetated areas.</p><p>The simulation results showed that when the impervious surface covers of a catchment increase, the peak and volume runoff will also increase, as expected.</p><p>Both the field observations and the hydrological model study carried out in this work showed that AA lowers SCA and SWE more rapidly in an urban environment compared to more untouched terrain. The reasons for this are redistribution of snow, and strong snow melt rates on roads, roofs, and in snow deposit areas. Low albedos and anthropogenic heat release are the main reasons for the enhanced snow melt rates.</p>
732

Migration of E. coli and solutes to tile drains via preferential and matrix flow

Moreno, Daniel 21 March 2002 (has links)
The extent of agricultural drainage has created concern for its potential undesirable effects on surface water quality. Land applications of liquid manure on tile drain fields have the potential to transport solutes and bacteria to the drains following precipitation or irrigation events and many times are directly sent to a surface water body, and have been documented as a source of contamination of surface waters. This study determined the potential for and magnitude of E. coli and solute migration to tile drains through the soil profile. Water from subsurface drains was analyzed for chemical and bacterial composition following tracer applications. Two sites were selected for the study to determine transport at large (field) and small (plot) scales. At the large-scale site, both tracers, bacteria (E. coli and Total Coliform) and Amino-G (a conservative tracer), were used to monitor the speed of transport from the surface to the tile drain following liquid manure applications, tracer applications and additionally precipitation events. The concentrations of E. coli were monitored every hour for 76 days during the spring. Both tracers, bacteria and Amino-G, were detected in the tile drainage shortly after precipitation events. The peak concentration of E. coli was observed to be 1.2 x 10⁶ CFU/l00mL. These elevated concentrations of E. coli might be attributed to the characteristics of the soil, high organic matter and well-structured clay soils. Both the rapid breakthrough of tracer to the tile drain and the peaks of tile water temperature during precipitation events provided evidence of macropore flow. Antecedent soil moisture and warmer temperatures appeared to provide ideal conditions for bacteria growth. The small-scale study site was selected for a more focused study. The purpose of this site was to quantify more accurately the percent mass of surface applied tracer that was transported to the tile drain, allowing mass balance calculations. Experiments were conducted during the summer to control the rate and total amount of irrigation. Amino-G readings were taken every 10 seconds for 125 hours of continuous irrigation. Tracer applications were conducted at runoff and non-runoff conditions. Both types of tracer applications had Amino-G breakthrough in less than 10 minutes after initiation of irrigation. Tracer applied at runoff rates resulted in 4 to 17 times more total tracer mass migrating to the tile drain than when applied at non-runoff rates. The total mass of Amino-G migrating to the tile drain during non-runoff conditions depended on the total volume of applied tracer, regardless of the tracer concentration. For an application of 5.6 mm at 12 mg/L, 5.7% of the total applied tracer migrated to the tile drain, whereas for an application of 1.9 mm at 27.7 mg/L only 2.8% of the total applied tracer migrated to the tile drain. Tile flow response to irrigation experiments appeared to be governed by soil moisture. Lysimeter samples were taken continuously every 4-8 hours until the 94th hour after tracer application. Tile water concentrations were consistently greater than concentrations found in the deeper suction lysimeters at corresponding times, providing further evidence of preferential flow. E. coli transported through the soil and into the drains were demonstrated to be event-driven by precipitation events and irrigation events. In addition, the characteristics of this type of soil - the high clay content, the well-defined structure, the high level of organic matter and rich biological activity has been known to enhance the preferential pathways and transport processes in the soil profile, resulting in rapid transport of surface applied solutes and effluents to tile drains. / Graduation date: 2003
733

Removal of sulphates from South African mine water using coal fly ash

Godfrey Madzivire January 2009 (has links)
<p>This study evaluated SO4 2- removal from circumneutral mine water (CMW) collected from Middleburg coal mine using coal FA collected from Hendrina power station. The following parameters were investigated: the effect of the amount of FA, the effect of the final pH achieved during treatment, the effect of the initial pH of the mine water and the effect of Fe and Al on SO4 2- removal from mine water. The precipitation of ettringite at alkaline pH was evaluated to further reduce the SO4 2- concentration to below the DWAF limit for potable water. Removal of SO4 2- from mine water was found to be dependent on: the final pH achieved during treatment, the amount of FA used to treat the mine water and the presence of Fe and Al in the mine water. Treatment of CMW using different CMW:FA ratios / 5:1, 4:1, 3:1, and 2:1 resulted in 55, 60, 70 and 71 % SO4 2- removal respectively. Treatment of CMW to pH 8.98, 9.88, 10.21, 10.96, 11.77 and 12.35 resulted in 6, 19, 37, 45, 63 and 71 % SO4 2- removal respectively. When the CMW was modified by adding Fe and Al by mixing with Navigation coal mine AMD and treated to pH 10, 93 % SO4 2- removal was observed. Further studies were done to evaluate the effects of Fe and Al separately. Treatment of simulated Fe containing AMD (Fe-AMD) to pH 9.54, 10.2, 11.8, and 12.1 resulted in 47, 52, 65, and 68 % SO4 2- removal respectively. When Al containing AMD was treated to pH 9.46, 10.3, 11.5 and 12 percentage SO4 2- removal of 39, 51, 55 and 67 % was observed respectively.</p>
734

Active neutralisation and amelioration of acid mine drainage with fly ash

Damini Surender January 2009 (has links)
<p>Fly ash and AMD samples were characterised by standard analytical methods for selection of the test materials. Active treatment by means of mixing fly ash with AMD in beakers and a large tank at pre-determined ratios have shown that fly ash is capable of neutralising AMD and increasing the pH beyond neutral values, which optimises the removal of heavy metals and ions. The trend was: the more fly ash added the quicker was the reaction time and higher the pH values achieved. Iron was reduced by as much 99 % in beaker scale experiments via Fe(OH)3 precipitation at pH values &gt / 4.0. A 99 % decrease in aluminium concentration was observed which was attributed to the precipitation of primarily gibbsite and various other mineral phases at pH values &gt / 5.5. As the pH increases, sulphate is adsorbed via Fe(OH)3 and gypsum precipitation at elevated pH. Sulphate attenuation with fly ash was excellent, achieving 98 % attenuation with beaker scale experiments and 1:1 fly ash:AMD ratio. Sulphate attenuation with fly ash was comparable to membrane and ion exchange systems and exceeded the performance of limestone treatment. Except for the larger volumes of fly ash needed to neutralise the AMD, fly ash proved to be a feasible and cost efficient alternative to limestone treatment. Fly ash produced competing results to limestone concerning acidity removal and sulphate attenuation. The comparison highlighted the advantages of utilising fly ash in comparison to limestone and demonstrated its cost effectiveness. The results of this study have shown that fly ash could be successfully applied for the neutralisation of acid mine drainage (AMD) and effectively attenuate the sulphate load in the treated water. The critical parameters to this technology are the variations of chemical composition and mineralogy of fly ash, which could influence the pH, contact time of the neutralisation reaction, and the same is true if the AMD quality varies.</p>
735

Effects of anthropogenic activities on snow distribution, and melt in an urban environment

Matheussen, Bernt Viggo January 2004 (has links)
In many parts of the world snow melt runoff influence discharge from combined sewer overflows (CSO) and flooding in urban drainage systems. Despite this, urban snow hydrology is a field that has received little attention from the urban drainage community. The objectives of this research were to better understand urban snow hydrology and through field work and hydrological modelling quantify effects of anthropogenic activities (AA) on snow distribution, and melt in an urban environment. This means in principle how the presence (design geometry) and operation of roads and buildings influence the snow distribution and melt in urban areas. The Risvollan urban catchment (20 ha) located in Trondheim, Norway, was used as a study area. A literature review of urban snow hydrology was also carried out. A gridded urban hydrology model (GUHM) was developed as part of the study. The principal idea of the GUHM is to subdivide an urban catchment into orthogonal equal area grid cells. The snow routine in the GUHM is based on an energy balance approach, which together with a soil-runoff routine is used to calculate a time series of rain, snow water equivalent (SWE), snow melt, and runoff, for each grid cell. In GUHM, processes such as snow clearing of roads, locally low albedos, heat/shadowing from buildings, and effects of slope and aspect are included in the model structure. A technique for observing time series of snow covered area (SCA) for an urban catchment is presented. The method is based on image processing and neural network technology to calculate SCA from a time series of images taken from a tall building in the Risvollan catchment. It was shown that SCA on roads and roofs in general becomes more rapidly snow free during melt periods compared to the park areas of the Risvollan catchment. This can be explained by snow clearing of roads, snowdrift from roofs and high snow melt rates on roofs and roads. The high melt rates was attributed to locally low albedos in vicinity to roads, rooftop snow packs exposure to wind and solar radiation, in addition to anthropogenic heat release from the roofs themselves. Field observations of SWE were carried out in the Risvollan catchment and it was shown that areal mean SWE located on/or nearby roads and buildings were significantly lower during mid and end of the winter, than in park areas. This can be attributed to higher melt rates caused by AA. A time series of SCA and SWE was obtained through field work for the period from 2000 to 2003 in the Risvollan catchment. The GUHM was applied and calibrated for the Risvollan catchment for a three year period. Two seasons were used as validation period. Comparison between the simulated and observed SWE, SCA and runoff data showed that the GUHM was able to simulate snow accumulation and melt for whole seasons with short time resolution (1 hour) satisfactory. The GUHM was used to quantify effects of AA on snow distribution and melt for six different land use scenarios in the Risvollan catchment for the period June 1998 to June 2003. The modelling results showed that when the area coverage of buildings and roads increased, the SCA and SWE more rapidly decreased during melt periods. Because of this more runoff will be produced in the early winter season (Jan-March) compared to if the catchment had been covered with only sparsely vegetated areas. The simulation results showed that when the impervious surface covers of a catchment increase, the peak and volume runoff will also increase, as expected. Both the field observations and the hydrological model study carried out in this work showed that AA lowers SCA and SWE more rapidly in an urban environment compared to more untouched terrain. The reasons for this are redistribution of snow, and strong snow melt rates on roads, roofs, and in snow deposit areas. Low albedos and anthropogenic heat release are the main reasons for the enhanced snow melt rates.
736

Geochemical Landscape Analysis for the Risk Assessment of Acid Mine Drainage in a Wetland Environment

Szucs, Andrea January 2006 (has links)
Attenuation of acid mine drainage (AMD) metals originating from abandoned mines and waste rock dumps is investigated in this thesis at Slättberg in central Sweden, where acid mine leachate has been discharging for over 70 years into the receiving wetland stream and mire. Risk assessment of AMD and related polluted lands requires a holistic approach that is able to study the complexity of pollution emissions and impacted landscapes. In this thesis a link between geochemical contaminant fate modelling and landscape analysis is presented for AMD risk assessment. A simple geochemical landscape analysis tool is developed to analyse and model geochemical abundances, geochemical gradients, geochemical flow patterns and geochemical barriers in the studied stream and mire sediments. Sampling locations at geochemical barriers are identified using landscape geochemical and GIS methods. A sequential chemical extraction procedure is used to investigate fractions which are expected to act as potential sinks of the six studied metals (Cu, Fe, Mn, Ni, Pb and Zn) in the sediments. For data modelling robust statistical methods of Exploratory Data Analysis are used to treat small sample sizes with multimodal character and outlying values. The spatial variability of metal retention in the sediments is studied by multivariate data analysis methods. Results show that the developed simple geochemical landscape analysis method can be used efficiently for the risk assessment of toxic mine contaminants in the complex receiving wetland landscape. It is suggested by the analysis that the oxidising geochemical barrier in the stream sediments can be sufficiently characterised by the distribution of Fe fractions. At the AMD discharge location metal sulphide formation and organic matter adsorption control metal retention in the mire. Mires are very sensitive to changes in hydrological conditions and drying of the sediments leads to erosion and hence the release of adsorbed metals to the environment.
737

Mechanical modelling of blade forming and drainage of flocculated suspensions

Holmqvist, Claes January 2005 (has links)
A method has been developed for flexible modelling of multi-component twin-wire blade formers. Features such as suction devices, loadable blades, curved blades, and partial contact between the blades and the forming fabrics are easily incorporated. New results include a series of calculations demonstrating the non-trivial interaction between the pressure pulses when the blades are positioned successively closer together, the effects of suction on the pressure pulse generated by a blade applied to the opposing wire, and how blades of modest curvature do not necessarily stay in contact with the fabric along their full width and the implications of this on the pressure gradients in the machine direction. The behaviour of the fibre mats as they experience the first of the blade pulses (after having been formed over a roll) is then considered in detail. Typically, the thickness of the mats decreases during the pulse, which reduces the rate of deposition of new fibres onto the webs. The amount of fibres in the sheets therefore changes marginally. Nevertheless, the resistance to drainage presented by the fibre network is seen to increase significantly due to the low permeability in highly compressed layers of the mat. As a result of the pressure gradients in the machine direction, the shear stresses in the plane of the fibre sheets can attain several hundred Pascal next to the forming fabrics. Further, a model for sheared consolidation of flocculated suspensions is presented that extends the concept of a concentration dependent yield stress, previously employed in studies of uniaxial consolidation, to comprise flocculated phase shear strength. Rate-dependent viscous stresses are also incorporated. The theory is applied to the problem of combined compression and shearing of a strongly flocculated suspension contained between two plates, one being fixed and acting as a perfectly permeable filter, the other movable and acting as a piston by which the load is applied. Qualitatively, the evolution of the volume fraction of solids exhibits the same behaviour as during uniaxial consolidation without shear. Applying shear is however predicted to increase the rate of the drainage process, due to a reduced load bearing capacity of the flocculated phase, and correspondingly higher pore pressures. / QC 20101022
738

A Geochemical Characterization of a Cold-Water Acid Rock Drainage Stream Emanating From the Zn-Pb XY-deposit, Howard's Pass, Yukon Territory, Canada

Feige, Kristen B. 08 February 2011 (has links)
An acid rock drainage (ARD) stream emanating from the Zn-Pb XY-deposit in the Yukon Territory was examined in order to evaluate the physico-chemical and geochemical processes governing the distribution of dissolved elements from the creek. The creek showed very high concentrations of metals (300 mg/L Fe, 500 mg/L Zn, 15 000 µg/L Ni, 1300 µg/L Cu and 4500 µg/L Cd), low water temperatures (1 – 12°C) and was acidic to moderately acidic (pH 3.1 – 5.0). It was found that this stream experienced a strong seasonal evolution, with increased sulphate and metal concentrations and decreased pH over the course of the summer. The mineral precipitates that formed under low pH conditions were a mixture of schwertmannite, goethite, jarosite and barite, while those that formed under moderately acidic conditions were a mixture of jurbanite, hydrobasaluminite, gibbsite and an X-ray amorphous Al-sulphate phase. Most of the mineral precipitates were of inorganic origin, although microbes may have played a role in mineral formation and trace metal sequestration in some of the precipitates. All of the mineral precipitates contained anomalous concentrations of trace elements (up to 1.5 % wt Zn) and showed a seasonal evolution in their mineralogy, both of which were determined to be a function of the pH and prevailing geochemical conditions. The geochemistry of the ARD creek draining the XY-deposit was compared to another ARD creek in the area that was likely draining shales. The two creeks were compared in order to determine if ARD geochemical characteristics can be used as a tool for the mineral exploration industry.
739

The Influence of Portal Vein Occlusion on Liver Mitochondria in Rats after Releasing Biliary Obstruction

IWASE, MASANORI 03 1900 (has links)
No description available.
740

Connectivity and runoff dynamics in heterogeneous drainage basins

Phillips, Ross Wilson 16 March 2011
A drainage basins runoff response can be determined by the connectivity of generated runoff to the stream network and the connectivity of the downstream stream network. The connectivity of a drainage basin modulates its ability to produce streamflow and respond to precipitation events and is a function of the complex and variable storage capacities along the drainage network. An improved means to measure and account for the dynamics of hydrological connectivity at the basin scale is needed to improve prediction of basin scale streamflow. The overall goal of this thesis is to improve the understanding of hydrological connectivity at the basin scale by measuring hydrological connectivity at the Baker Creek Research Basin during 2009. To this end, the objectives are to 1) investigate the dynamics of hydrological connectivity during a typical water year, 2) define the relationship between the contributing stream network and contributing area, 3) investigate how hydrological connectivity influences streamflow, and 4) define how hydrological connectivity influences runoff response to rainfall events. At a 150 km2 subarctic Precambrian Shield catchment where the poorly-drained heterogeneous mosaic of lakes, exposed bedrock, and soil filled areas creates variable contributing areas, hydrological connectivity was measured between April and September 2009 in 10 sub-basins with a particular focus on three representative sub-basins. The three sub-basins, although of similar relative size, vary considerably in the dominant typology and topology of their constituent elements. At a 10 m spatial resolution, saturated areas were mapped using both multispectral satellite imagery and in situ measurements of storage according to land cover. To measure basin scale hydrological connectivity, the drainage network was treated as a graph network with stream reaches being the edges that connect sub-catchment nodes. The overall hydrological connectivity of the stream network was described as the ratio of actively flowing relative to potentially flowing stream reaches, and the hydrological connectivity of the stream network to the outlet was described as the ratio of actively flowing stream reaches that were connected to the outlet relative to the potentially flowing stream reaches. Hydrological connectivity was highest during the spring freshet but the stream network began to disintegrate with its passing. In some drainage basins, large gate keepers were able to maintain connectivity of the stream network downstream during dry periods. The length of the longest stream was found to be proportional to contributing area raised to a power of 0.605, similar to that noted in Hacks Law and modified Hacks Law relationships. The length of the contributing stream network was also found to be proportional to contributing area raised to a power of 0.851. In general, higher daily average streamflows were noted for higher states of connectivity to the outlet although preliminary investigations allude to the existence of hysteresis in these relationships. Elevated levels of hydrological connectivity were also found to yield higher basin runoff ratios but the shape of the characteristic curve for each basin was heavily influenced by key traits of its land cover heterogeneity. The implications of these findings are that accurate prediction of streamflow and runoff response in a heterogeneous drainage basin with dynamic connectivity will require both an account of the presence or absence of connections but also a differentiation of connection type and an incorporation of aspects of local function that control the flow through connections themselves. The improved understanding of causal factors for the variable streamflow response to runoff generation in this environment will serve as a first step towards developing improved streamflow prediction methods in formerly glaciated landscapes, especially in small ungauged basins.

Page generated in 0.0301 seconds