• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 10
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of the sizing of commercial patterns

Lindberg, Judith Kay January 2011 (has links)
Includes folded charts in pocket. / Digitized by Kansas Correctional Industries
2

A comparison of size and shape of certain commercially available dress patterns

Disney, Phyllis Ann, 1934- January 1961 (has links)
No description available.
3

Cut scheduling for optimum fabric utilization in apparel production

Coff, Howard Steven 12 1900 (has links)
No description available.
4

Factors involved in personalized costume design

Selfridge, Shelley Lynn January 2011 (has links)
Digitized by Kansas Correctional Industries
5

Investigation of the application of computer in the marking process inthe garment industry

馬榮潤, Ma, Wing-yun. January 1980 (has links)
published_or_final_version / Electrical Engineering / Master / Master of Philosophy
6

A qualitative study of three American pattern drafting systems of the late nineteenth century

Burford, Karen Sundby January 2011 (has links)
Digitized by Kansas Correctional Industries
7

The influence of pattern grading on bodice fit and style sense

Murphey, Ina Crouch 06 June 2008 (has links)
The western Piedmont of Pennsylvania is underlain by the Octoraro and Peters Creek Formations, and these formations were juxtaposed during Late Paleozoic dextral strike-slip shearing. North of the shear zone, the Octoraro Formation contains evidence for two metamorphisms and deformations prior to strike-slip shearing, whereas south of the shear zone the Peters Creek Formation contains evidence for only one. The discordance in metamorphic and deformational history across the shear zone suggests the now juxtaposed rocks originated in different parts of the orogen. A minimum of 150 km of orogen parallel dextral offset is proposed for the shear system based on palinspastic reconstruction of the Cambrian-Ordovician shelf edge between northern Maryland and southeastern New York. The Peters Creek Formation consists of three lithofacies: 1) graded metasandstone beds, 2) meta-quartz-pelite, and 3) massive metasandstone lenses within the graded bedded sequences. The occurrence of interlayered greenstone in lithofacies 1) suggests rift related deposition. These rift clastics consist of two submarine turbidite-fan systems defined by thick sequences of interlayered feldspathic metasandstone and schist, separated by a region underlain of quartz-schist. Comparison of the Peters Creek Formation with known Iapetan rift clastics in the central Appalachians of Virginia suggests the Peters Creek deposits are also related to Iapetan rifting. Transpressional structural models have been applied to oblique convergence tectonics, with the coeval development of contractional and transcurrent structures. Late Paleozoic post-Taconian deformation in the north-central Appalachian Piedmont of Pennsylvania and Maryland is characterized by two stages of dextral transpression. Stage one comprises a map-scale ductile conjugate shear zone pair (the Rosemont and Crum Creek shear zones) that developed at amphibolite facies. These conjugate shear zones were later overprinted, during stage two, by greenschist facies dextral shear zones that flank broad upright antiforms. Conjugate shear-pair criteria were applied to these structures to constrain the paleo-principal compressive stress orientations. During stage one σ1 and σ3 were shallowly plunging, with σ2 steeply plunging. During stage two σ1 and σ2 were shallowly plunging, with σ3 steeply plunging. The structural evolution and associated change in stress array suggests unroofing during transpression, consistent with the decrease in metamorphic grade. Post-transpressional deformation produced a pair of conjugate cleavages in the lower Susquehanna River region, and determined orientations of the principal compressive stresses suggest Late Paleozoic extension, possibly related to gravitational collapse. Previously published orthogonal collision and tectonic assembly models for the north-central Appalachian Piedmont are incompatible with the new data. Oblique collision tectonics resulted in complex dextral transpressional deformation and large orogen parallel displacement of crustal blocks. Tectonic models that do not include the transpressional orogen component of the tectonic history should be seriously reconsidered. / Ph. D.
8

Automation of the Modular Pattern System basic skirt pattern drafting methodology using Turbo Pascal and dBaseII

Clark, Miriam Shaheed January 2010 (has links)
Typescript (photocopy).rev / Digitized by Kansas Correctional Industries / Department: Computer Science.
9

Development and evaluation of individualized instructional media for draping on the dress form

Forbes, Joan Louise Clark January 1978 (has links)
No description available.
10

Implementation evaluation of the PAD system into the pattern construction curriculum.

January 1994 (has links)
by Lun Ngai-mei, Amy. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves [1-10] (4th gp.)). / Acknowledgment --- p.i / Abstract --- p.ii -iii / Table of Content --- p.iv -viii / List of Tables --- p.vii-viii / List of Figures --- p.viii / Chapter Chapter 1 --- Introduction --- p.1-4 / Chapter 1.1 --- Background of the Study --- p.4-6 / Chapter 1.2 --- Purpose of the Study --- p.7-9 / Chapter 1.3 --- Significance of the Study --- p.9-10 / Chapter 1.4 --- Definition of Terminology --- p.10 / Chapter 1.4.1 --- The Subject of 'Pattern Construction' --- p.11-13 / Chapter 1.4.2 --- CAD systems in the Clothing Industry --- p.13-16 / Chapter 1.4.3 --- The PAD System --- p.17-20 / Chapter Chapter 2 --- Literature Review --- p.21 / Chapter 2.1 --- Educational Innovation & Implementation Evaluation / Chapter 2.1.1 --- Educational Innovation --- p.21-22 / Chapter 2.1.2 --- Implementation --- p.22-27 / Chapter 2.1.3 --- Evaluation --- p.28 / Chapter 2.1.4 --- Conducting Evaluation for an Educational Innovation --- p.29 / Chapter 2.2 --- Evaluation of Instructional Materials --- p.30 / Chapter 2.2.1 --- Conception & Methods in Evaluation of Instructional Systems --- p.30-31 / Chapter 2.2.2 --- An Evaluation Model for Instructional System --- p.32-34 / Chapter 2.3 --- A Model for Computer Software Evaluation --- p.34-36 / Chapter 2.3.1 --- Description of the Model --- p.37-38 / Chapter 2.3.2 --- Methodology used in the Software Evaluation Model --- p.38-39 / Chapter 2.3.3 --- Discussions on the Reiser & Dick Evaluation Model --- p.39-40 / Chapter 2.4 --- Conditions to Evaluating the Implementation of Educational Innovations --- p.41 / Chapter 2.4.1 --- Initial Status of Learners --- p.41 / Chapter 2.4.2 --- Learner Performance after a period of instruction --- p.42 / Chapter 2.4.3 --- Execution of Treatment/Study of Program Implementation --- p.42-43 / Chapter 2.4.4 --- Costs --- p.43 / Chapter 2.4.5 --- Supplemental Information --- p.44 / Chapter 2.5 --- The 'System Approach' to Instructional Design --- p.44-45 / Chapter 2.5.1 --- Definition of Instructional System --- p.45 / Chapter 2.5.2 --- The derivation of an instructional system --- p.46-49 / Chapter 2.5.3 --- Selection of Delivery System --- p.50-52 / Chapter 2.5.4 --- Individualized instruction as a delivery system --- p.53-55 / Chapter 2.6 --- Applications of Computer Technology as Learning Media in a Curriculum / Chapter 2.6.1 --- Computer applications in the Curriculum --- p.55-57 / Chapter 2.6.2 --- Integration of Computers into the Curriculum --- p.57-59 / Chapter 2.6.3 --- Computer Software for Curriculum --- p.59-60 / Chapter 2.6.4 --- Effectiveness of Computer-Based Instruction --- p.60-61 / Chapter 2.7 --- The Four Modes of Experiential Learning --- p.62-63 / Chapter 2.7.1 --- Individual Learning Styles --- p.63-64 / Chapter 2.7.2 --- Relationship between Learning Styles & the Knowledge Structure of Academic Fields --- p.65-66 / Chapter 2.8 --- Summary --- p.66-67 / Chapter Chapter 3 --- Research Methodology --- p.68 / Chapter 3.1 --- Research Design & Procedures --- p.68-73 / Chapter 3.2 --- Research Hypotheses --- p.73 / Chapter 3.2.1 --- Major Hypotheses --- p.73-74 / Chapter 3.2.2 --- Other Hypotheses --- p.74 / Chapter 3.3 --- Research Conditions & Sampling --- p.75 / Chapter 3.3.1 --- Initial Status of Learners/Students --- p.75-76 / Chapter 3.3.2 --- Learning Resources/Conditions --- p.76-77 / Chapter 3.3.3 --- Computer Access Time --- p.77 / Chapter 3.3.4 --- Technical Support --- p.77 / Chapter 3.4 --- Research Variables --- p.78 / Chapter 3.4.1 --- Independent Variables --- p.78-80 / Chapter 3.4.2 --- Dependent Variables --- p.80 / Chapter 3.5 --- Research Instruments --- p.80-82 / Chapter 3.6 --- Statistical Analyses --- p.83-85 / Chapter Chapter 4 --- Results & Discussion --- p.86 / Chapter 4.1 --- Results --- p.86 / Chapter 4.1.1 --- Reliabilities of Research Instruments --- p.86-88 / Chapter 4.1.2 --- Factor Analyses of Pretest & Posttest Questionnaires --- p.88-89 / Chapter 4.1.3 --- Pair t-tests of Achievement Scores before & after treatment --- p.90 / Chapter 4.1.4 --- Analyses of Covariance/Variance on Achievement by Independent Variables --- p.91-94 / Chapter 4.1.5 --- Analyses of Variance on Posttest score by Independent Variables --- p.94 / Chapter 4.1.6 --- Interaction Effects --- p.95 / Chapter 4.2 --- Discussion --- p.96 / Chapter 4.2.1 --- Reliabilities of Research Instruments --- p.96-102 / Chapter 4.2.2 --- The Major Hypotheses --- p.102-103 / Chapter 4.2.3 --- Factors affecting Outcomes of Innovation --- p.104-108 / Chapter 4.2.4 --- Follow-up on the Evaluation Study --- p.108 / Chapter Chapter 5 --- "Conclusion, Limitations & Recommendations" --- p.109 / Chapter 5.1 --- conclusion on the Evaluation Study --- p.110-117 / Chapter 5.2 --- Limitations of the Study --- p.117-120 / Chapter 5.3 --- Suggestions for Further Research --- p.120-123 / Bibliography --- p.Bi-Bx / Appendices / App. I Statistical Results from the Pilot Study / App. II A List of CAD Suppliers / App. III Self-instructional Unit / App. IV Individualized Instructional Course - Blue-print / App. V Kolb's Learning Style Inventory / App. VI Pretest Questionnaire / App. VIIa Computer Interaction Observation Checklist - for individual student / App. VIIb Computer Interaction Observation Checklist - for small group / App. VIII Posttest Questionnaire / Tables / Table 2.1 Alternative perspectives on the Implementation Process --- p.26 / Table 4.1 Reliability Table of Kolb's Learning Style Inventory --- p.86 / Table 4.2 Reliability Table of Pretest Questionnaire --- p.87 / Table 4.3 Reliability Table of Posttest Questionnaire --- p.88 / Table 4.4 Pair t-test on Achievement Scores before & after treatment --- p.90 / Table 4.5 Analysis of Covariance on Achievement after treatment among different groups of subjects categorized by their Demographic Data --- p.91 / Table 4.6 Analysis of Covariance on Achievement after treatment among different groups of subjects categorized by their Entry Characteristics --- p.92 / Table 4.7 Analysis of Variance on Achievement after treatmentamong different groups of subjects categorized by Learning Conditions --- p.93 / Table 4.8 Analysis of Variance on Posttest scores among different groups of subjects categorized by Learners' Response after treatment --- p.94 / Table 4.9 Interaction Effects between ability levels & modes of study --- p.95 / Table 4.10 Distribution of Learners within the Four Dimensions of Kolb's Experiential Learning Figures --- p.99 / Fig. 1.1 Pattern cutting examples of a men's jacket using a CAD system --- p.12 / Fig. 1.2 Diagram showing graded patterns with grade points & sizes --- p.12 / Fig. 1.3 A Production lay-plan shown on a computer screen --- p.13 / Fig. 1.4 A sleeve pattern being digitized --- p.13 / Fig. 1.5 A Designer's Perspective of Clothing/Textile computer programs --- p.16 / Fig. 2.1 curriculum Dimensions & their Relationships in the Implementaion Process --- p.24 / Fig. 2.2 An Evaluation Model for instructional design --- p.33 / Fig. 2.3 An Evaluation Model for computer software --- p.36 / Fig. 2.4 A Flowchart showing the stages of instructional design --- p.49 / Fig. 2.5 A multi-dimensional map outlining the four dimensions of computer technologieis & their attributes --- p.56 / Fig. 2.6 Modes of learning in the experiential learning cycle --- p.62 / Fig. 2.7 Relationship between learning styles & modes of learning --- p.64 / "Fig, 2.8 A typology of academic disciplines" --- p.66 / Fig. 3.1 A modified Evaluation Model for evaluating Multi-media Approach of Instructional System & CAD software --- p.70 / Fig. 4.1 Graph showing Interaction Effects between Ability Levels & Mode of Study --- p.95 / Fig. 4.2 Similarities among Academic Specialities at the University of Illinois --- p.100

Page generated in 0.1147 seconds