• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 2
  • Tagged with
  • 37
  • 37
  • 37
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A report on drill steel wear at Isle Royal [sic] Mine, Houghton, Michigan

Dowd, James Joseph. January 1921 (has links) (PDF)
Thesis (Professional Degree)--University of Missouri, School of Mines and Metallurgy, 1921. / The entire thesis text is included in file. Typescript. Illustrated by author. Title from title screen of thesis/dissertation PDF file (viewed May 13, 2009)
32

The evaluation of the repeatability and performance of the cast iron multifacet drill

Chou, Kou-Ching. January 1984 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1984. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 126-128).
33

Comparison of three drilling technologies to characterize the vadose zone, Hanford Site

Holm, Rochelle Hales, January 2007 (has links) (PDF)
Thesis (M.S. in environmental science)--Washington State University, August 2007. / Includes bibliographical references (p. 19).
34

The effects of variables and variable interactions on tin coated drill performance

Childs, James Joseph January 1983 (has links)
Today, drilling can be considered the most common of all metal cutting operations. Drilling can be accomplished on nearly all machines that can produce a relative rotation of the spindle, and/or the workpiece. These machines can include drill presses, lathes, milling machines and machining centers. Of the more than 1.70 million machine tools in the United States, that are located in plants employing more than twenty workers, more than half of these machines can, and probably are performing drilling functions. Drilling has been studied in numerous investigations with the objective of increasing drill performance. Severely lacking in this research has been the use of statistically designed experiments. Traditional experimental techniques in tooling have been conducted under a one variable at a time methodology. The twist drill, however, is one of the most complex metal cutting tools in existence today. Changing one variable at a time can lead to unwanted changes in other variables. With today's statistical techniques and computers, variables and variable interactions should be able to be adjusted and controlled. Because drilling is one of the leading metal cutting operations, an ever so slight increase in the level of drill performance could yield important benefits to manufacturing. Investigation into drill geometry and variable interaction may also lead to significant increases in drill performance. A quantitative analysis was performed to determine the effect of different independent variables on tool life for Titanium Nitride Coated tools. This was accomplished in two stages. In Stage 1, the variables lip height, helix angle, and margin width were tested one at a time for their effect on tool life. In Stage 2, the variable lip height from Stage 1 and the independent variables, speed and feed, were tested for their effect on tool life in a three variable, two level factorial treatment design. Secondary measurements were also taken in Stage 2 on acceleration, torque and face wear. Stage 1 showed that tighter tolerances on lip height could improve tool life. The 39 degree helix angle was more of a detriment than an aid, to increase tool life. The lowest level of margin width had lower tool life than either of the other two levels. In stage 2 feed and lip height had a significant effect on tool life at the 90% confidence level. Speed did not have an effect on tool life. No variable in Stage 2 had an significant effect on acceleration at either the 95% or 90% confidence level. At the low level of the feed, acceleration readings seemed applicable in determining pending tool failure. The largest values of crater width on the face were associated with the low values of feed. No true distinction can be made with torque, between any of the combinations of levels tested. This research has attempted to further quantify some of the variables and variable interactions associated with drilling for Titanium Nitride Coated tools. / M.S.
35

A study of high performance twist drill design and the associated predictive force models.

Zhang, Qiang, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis presents a detailed analysis of the plane rake faced drill design, its grinding method and grinding wheel geometry. A fundamental geometrical analysis has then been carried out on the major cutting edges of the modified drills according to the national and international standards. It has been shown that this new drill design results in a significant increase in the normal rake angle at lips as well as point relieving at the chisel edge region. Geometrical models for the various drill point features have been established which uniquely define the drill point features of the modified drill design. A comprehensive experimental investigation has been carried out to study the drilling performance of the modified drills, when drilling a high tensile steel, ASSAB 4340, with TiN coated high speed steel drills over a wide range of drilling conditions. Comparing to the drilling performance with conventional twist drills under the corresponding conditions, it has been found that the modified drills can reduce the thrust force by as much as 46.9% with the average of 23.8%; the reduction of drilling torque is also significant at an average of 13.2% and the maximum of 24.9%. Similarly, the new drill design shows great superiorities over the conventional drills in terms of drill-life. In the drill-life tests, a few conventional drills were broken, but all plane rake faced drills performed very well. In order to estimate the cutting performance in process planning on a mathematical and quantitative basis when drilling with the modified drills, predictive cutting force models have been developed based on the unified-generalized mechanics of cutting approach. The models have been assessed qualitatively and quantitatively and showed good agreements with the experimental thrust, torque and power. Empirical-type force equations have also been developed to provide simple alternatives for practical applications.
36

A study of high performance twist drill design and the associated predictive force models.

Zhang, Qiang, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis presents a detailed analysis of the plane rake faced drill design, its grinding method and grinding wheel geometry. A fundamental geometrical analysis has then been carried out on the major cutting edges of the modified drills according to the national and international standards. It has been shown that this new drill design results in a significant increase in the normal rake angle at lips as well as point relieving at the chisel edge region. Geometrical models for the various drill point features have been established which uniquely define the drill point features of the modified drill design. A comprehensive experimental investigation has been carried out to study the drilling performance of the modified drills, when drilling a high tensile steel, ASSAB 4340, with TiN coated high speed steel drills over a wide range of drilling conditions. Comparing to the drilling performance with conventional twist drills under the corresponding conditions, it has been found that the modified drills can reduce the thrust force by as much as 46.9% with the average of 23.8%; the reduction of drilling torque is also significant at an average of 13.2% and the maximum of 24.9%. Similarly, the new drill design shows great superiorities over the conventional drills in terms of drill-life. In the drill-life tests, a few conventional drills were broken, but all plane rake faced drills performed very well. In order to estimate the cutting performance in process planning on a mathematical and quantitative basis when drilling with the modified drills, predictive cutting force models have been developed based on the unified-generalized mechanics of cutting approach. The models have been assessed qualitatively and quantitatively and showed good agreements with the experimental thrust, torque and power. Empirical-type force equations have also been developed to provide simple alternatives for practical applications.
37

Sensing of drill wear and prediction of drill life

Subramanian, Krishnamoorthy January 1977 (has links)
Thesis. 1977. Mech.E.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by K. Subramanian. / Mech.E.

Page generated in 0.1401 seconds