• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 508
  • 90
  • 62
  • 51
  • 41
  • 34
  • 13
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • Tagged with
  • 1039
  • 1039
  • 181
  • 178
  • 178
  • 162
  • 98
  • 82
  • 81
  • 79
  • 73
  • 68
  • 65
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Analysis of volatile organic compounds in water by sorptive extraction and gas chromatography - mass spectrometry

Hassett, Anthony John 30 July 2010 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc)--University of Pretoria, 2010. / Chemistry / unrestricted
272

A Comparative Analysis of Wellhead Protection: Virginia and Massachusetts

Raftery, Kelley Lynne 12 June 2002 (has links)
Proactive drinking water programs assist communities in the long-term protection of their water supply. The 1986 amendments to the Safe Drinking Water Act (SDWA) seek to protect groundwater sources of public drinking water. 42 United States Code Section 300h-7 created the Wellhead Protection Program. The 1986 SDWA Amendments require all states to submit a Wellhead Protection Program for public groundwater drinking sources. The 1996 SDWA Amendments require all states to submit Source Water Assessment Plans for both groundwater and surface water sources. The 1986 and 1996 SDWA Amendments aim to protect public health by preventing contamination of drinking water sources. <p> This paper compares and contrasts the effectiveness of groundwater Wellhead Protection Programs (WHPP) in Virginia and Massachusetts. These states take different management approaches to protect public groundwater drinking sources. Virginia encourages local governments to participate voluntarily in wellhead protection activities. Massachusetts requires all municipal and private suppliers that provide public drinking water to adopt a WHPP. The relative success achieved by Massachusetts and Virginia was evaluated with two measures: percentage of wellhead protection programs implemented and the percentage of state reported drinking water quality violations. / Master of Urban and Regional Planning
273

Fate of Salmonella Typhimurium in biofilms of drinking water distribution systems

Burke, Lisa Mandy 23 February 2007 (has links)
The propensity of Salmonella to persist in water environments under unfavourable conditions is of concern as these water environments serve as contamination reservoirs. The role of contaminated water in the transmission of Salmonella in developing countries is largely unknown. The fate and persistence of non-typhoidal Salmonella in water environments and the specific influence of the indigenous microbiota on the survival and growth of Salmonella is poorly understood. A tagged Salmonella strain distinguishable in vivo from a mixed bacterial community would greatly facilitate the study of Salmonella in water environments. The clinically relevant S. enterica subsp. enterica ser. Typhimurium isolate was chromosomally tagged using the pUT mini–Tn5 Km transposon with the green fluorescent protein gene gfpmut3b*. Southern Blot hybridisation confirmed that the gfp gene had integrated into the chromosome. The gfp gene was stably maintained and the gfp-labelled recombinants were not growth rate impaired under low nutrient conditions. No significant changes were observed between the wild-type and the tagged strain. The survival fitness studies indicated the incorporation of the gfp gene did not have any noted detrimental effects on the survival and behaviour of the tagged strains. These tagged strains could therefore be used to study the fate and survival of Salmonella in biofilms of drinking water distribution systems. Genetic tagging of the target organism with the gfp gene, encoding the green fluorescent protein, allows in situ detection of undisturbed cells and is ideally suited for monitoring Salmonella as a monospecies or in a complex mixed community. The fate and persistence of non-typhoidal Salmonella in drinking water biofilms was investigated. The ability of Salmonella to form biofilms independently and the fate and persistence of Salmonella in an aquatic biofilm was examined. </p.> In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24 hours, growing to form micro-colonies within the biofilm. S. Typhimurium was also released at high levels from the drinking water-associated biofilm into the flow, and was seen to re-colonize elsewhere. Results showed that Salmonella can enter into, survive and grow within, and be released from a drinking water biofilm. Once Salmonella has entered into a distribution system, it will be able to colonize an existing biofilm, grow in it and be released into the flow for re-colonization elsewhere, and possible subsequent infection of consumers. / Dissertation (MSc (Microbiology ))--University of Pretoria, 2005. / Microbiology and Plant Pathology / unrestricted
274

Dricksvattenförsörjning och krisberedskap i Sveriges kommuner / Drinking water supply and crisis management in Sweden’s municipalites

Österlund, Edvin January 2020 (has links)
We may take our access to clean water for granted but recent events in Sweden and Europe have shown that a loss of water supply due to contamination does occur and can have large negative effects on society both financially and health wise. These events may become more frequent as the climate changes. This study investigates different aspects of crisis management for drinking water supply in municipalities in Sweden. The data was collected in a questionnaire sent out to the municipalities as a web-survey. The questionnaire included questions about the municipality’s ability to handle a failure in the main water supply and if a crisis in the drinking water supply was included in their risk and vulnerability analysis (RSA). The overall response rate was 15 %. The majority of the municipalities answered that drinking water supply was included in their RSA. Most of the municipalities lacked the ability to connect to a reserve water source, and the majority of those who were able, could not do so within 24 hours. A municipality’s ability to connect to a reserve water source did not vary with population between small (&lt;20 000) and semi large (&gt;20 000&lt;100 000). The study indicates that there are improvments regarding crisis preparedness in the RSA and the ability to connect to a reserve water source compared to older studies however it also indicates that some municipalities are still not well prepared in case their primary water source of drinking water can not be used.
275

“From the Groundwater Up?” : Analyzing the Collaborative Drinking Water Source Protection Regime in Ontario, Canada in the Context of Theorized Success Factors for Collaborative Water Governance

Hughes, Melissa 26 September 2019 (has links)
Collaborative approaches to the governance and management of drinking water sources have gained traction in recent decades as constituting a superior, bottom-up alternative to conventional and adversarial forms of governance, which have largely occurred from the top-down. Collaborative water governance enables local stakeholders to work together to more effectively manage water resources at the watershed level, in an inclusive manner that considers the interests of the various users of the resource. However, despite its promise, collaboration can be difficult to effectively achieve in practice, and scholars assert that some of the normative assumptions underlying the concept do a disservice to the difficulties that actors face in this setting. This research addresses this gap through an empirical analysis of the collaborative approach to drinking water source protection planning and governance that was implemented in Ontario through the enactment of the Clean Water Act in 2006. Three factors prevalent in the literature that are thought to underscore successful collaboration were chosen as the basis of this analysis: representation, public participation, and financial capacity. The author first analyzed the Hansard transcripts on the debates on the Clean Water Act, in order to identify the issues and concerns that were raised by Members of Provincial Parliament (MPPs) relating to these factors, and to examine how the legislation was formulated to include these factors in its collaborative mandate. This analysis revealed that elected officials appeared to view these factors as being important for the success of the program, and that in the end, the legislation was strengthened in terms of its collaborative governance elements, at least on paper. The author then conducted a second directed content analysis of the meeting minutes of three source protection committees across the province, to identify how these committees experienced representation, public participation, and financial capacity throughout their respective collaborative processes. This analysis revealed that some of the elements of the legislated process of collaboration, to which the committees were bound, appeared to exacerbate or in some cases lead to fundamental issues throughout the SWP planning processes. This led the author to ultimately question how much authority was delegated to these committees in actuality in order to carry out SWP on the ground, and thus how truly collaborative and “from the ground up” this program was truly intended to be. The findings suggest that greater attention should be paid in future research to the potential implications of particular design features of mandated forms of collaboration on the ability of collaborative organizations to meet their objectives, particularly when collaborative water governance is transplanted to other contexts.
276

Diel Vertical Distribution of Microcystis and Associated Environmental Factors in the Western Basin of Lake Erie

Kramer, Eva Lauren January 2018 (has links)
No description available.
277

Assessing the impacts of a water, sanitation, and hygiene (WASH) intervention on changing behavior in Bihar, India

Wilcox, Emily Rose 07 June 2023 (has links)
Access to safe water, sanitation, and hygiene (WASH) is a fundamental human right and a critical component of public and environmental health. Inadequate access to WASH facilities and practices can give rise to preventable diarrheal and waterborne diseases, which can have severe consequences on individuals' health and well-being. This is especially true in low- and middle-income countries such as India. To address these issues, the S.M. Sehgal Foundation identified water quality and hygiene needs in Bihar, India, and thus launched a behavior change intervention called "WASH for Healthy Homes." The intervention aimed to promote the use of silver-ceramic pot filters and safe handwashing practices in five communities of the Vaishali District. While behavior change is a common approach to address WASH issues, evaluating the outcomes of such interventions is crucial for determining the most effective strategies and conditions under which they can be successful. Therefore, this study assessed the effectiveness of the WASH for Healthy Homes intervention and identified factors that influenced its success. A mixed methods approach was utilized that combined statistical analyses of pre- and post-intervention survey data with a thematic analysis of interview and focus group discussion data. Results demonstrated that the intervention was successful in increasing the adoption of the silver-ceramic pot filter and overall safe handwashing practices within the study communities. Success of the WASH for Health Homes intervention was facilitated by participants' health concerns, trust in the field coordinator and social peers, the aesthetic appeal of the treated water, and repeated intervention messaging. However, adoption of intervention behaviors was hindered by several factors, including economic barriers, gender roles in decision-making, the effects of children and elderly in the household, and low attendance during intervention sessions. The research findings provide valuable insights that can help nonprofits better design and execute behavior change interventions, especially in the face of increasing WASH challenges. / Master of Science / Access to safe water, sanitation, and hygiene is a basic human right and critical for human health. Unfortunately, many people, especially those in low- and middle-income countries like India, lack adequate access to these facilities, leading to waterborne diseases and other health problems. To address this issue, the S.M. Sehgal Foundation launched a behavior change program called "WASH for Healthy Homes" to promote the use of water filters and safe handwashing practices in rural Bihar, India. To determine the success of the intervention and identify factors that influenced its effectiveness, this study used a variety of methods including statistics, interviews, and focus group discussions. Results showed that the program was successful in increasing the adoption of the filter and safe handwashing practices. Success was due to participants' health concerns, trust in the field coordinator and their peers, the aesthetic appeal of the filtered water, and repeated messaging. However, there were also barriers to adoption, such as economic barriers, gender roles, and low attendance during intervention sessions. These findings are important for nonprofits to better design and execute behavior change interventions in the face of growing WASH challenges.
278

Evaluation of Iron and Manganese Control for a Volcanic Surface Water Supply Treated with Conventional Coagulation, Sedimentation and Filtration Processes

Hall, Christine 01 January 2014 (has links)
A research project assessing the effectiveness of potassium permanganate (KMnO4) for the treatment of iron (Fe) and manganese (Mn) has been conducted by the University of Central Florida (UCF) on behalf of the United States Navy with regards to the water supply on the island of Guam, located in the Marianas Islands. The study consisted of three basic investigative components: one that examined the use of potassium permanganate for iron and manganese control for Fena Lake, a second that examined the existing unit operations that comprised the Navy's water treatment plant (NWTP), and a third that examined iron and manganese field sampling analytical procedures. In the first and primary component of the research, surface water from Fena Lake located within the Naval Magazine in proximity of Santa Rita, Guam was collected at several different lake depths and initially analyzed for iron and manganese using inductively coupled plasma. Subsequent aliquots of Fena Lake collected at the various water depths were transferred to jars then dosed with varying amounts of potassium permanganate after which iron and manganese content was determined. The jars were covered to simulate actual lake to plant transfer conditions experienced at the Navy's on-island facilities. A portion of the jars was dosed with potassium permanganate prior to metals analysis in order to allow for comparisons of baseline conditions. To represent conventional treatment processes, the water samples were then coagulated with aluminum sulfate prior to filtration to remove the oxidized manganese and iron formed from the addition of the potassium permanganate. Coagulated aliquots were filtered and collected to evaluate residual dissolved iron and manganese content. Based on the results of the jar tests it was determined that manganese was reduced by 95% or greater and that iron was completely removed to below the analytical detection limit (0.001 mg/L). It was determined that the potassium permanganate dose required for oxidation of iron was 0.94 mg/mg iron and for manganese was 1.92 mg/mg manganese. It was also observed that when the jars containing aliquots that turned brown in color after potassium permanganate dosing meant that iron and manganese were present and were being oxidized; however, water samples that turned pink were found to be over-dosed with potassium permanganate. The pink water is an undesired characteristic and could result in customer complaints when distributed to the system. The second component of research focused on NWTP existing conditions. Water samples were collected after each key unit operation within the NWTP and analyzed for iron and manganese. This was to determine if pre-chlorination at Fena Lake was effective at removing iron and manganese that could be present in the source water. Analysis was conducted where pre-chlorination at Fena Lake was practiced as well as when no pretreatment was practiced prior to the NWTP. It was determined that the iron and manganese were not detected downstream of the coagulation unit operation within the NWTP even when pre-chlorination was not practiced. Consequently pre-chlorination of Fena Lake source water was not required for controlling iron and manganese under the conditions experienced in this study. A third study was also implemented to confirm that 0.1-micron filters are appropriate for use in preparing samples for analytical determination of iron and manganese analysis at various points within the NWTP. The filtration step is important to delineate between dissolved and suspended iron and manganese forms. Standard Methods 3120B recommends the use of 0.45-micron filters, although based on literature it has been shown that oxidized manganese particles may be smaller than a 0.45-micron pore size. Unless a coagulant was used, the oxidized manganese may not be fully removed via the 0.45-micron filter. To verify the effectiveness of using a 0.1-micron filter, a jar test was conducted to compare the use of a 0.1-micron filter, a 0.45-micron filter, and a 0.45-micron filter after the sample has been coagulated. It was found that the use of a 0.1-micron filter was superior to the use of 0.45-micron filters even with coagulant addition when directly comparing between dissolved and suspended iron and manganese forms. It is recommended that 0.1-microns be utilized in lieu of historically recommended 0.45-micron filters for sample preparation procedures.
279

Water Quality Variations During Nitrification In Drinking Water Distribution Systems

Webb, David W 01 January 2004 (has links)
This thesis documents the relationship among the major water quality parameters during a nitrification episode. Nitrification unexpectedly occurred in a chloraminated pilot drinking water distribution system practicing with a 4.0 mg/L as Cl2 residual dosed at 4.5:1 Cl2:NH3-N. Surface, ground and sea water were treated and disinfected with monochloramines to produce finished water quality similar to regional utility water quality. PVC, galvanized, unlined cast iron and lined iron pipes were harvested from regional distribution systems and used to build eighteen pilot distribution systems (PDSs). The PDSs were operated at a 5-day hydraulic residence time (HRT) and ambient temperatures. As seasonal temperatures increased the rate of monochloramine dissipation increased until effluent PDS residuals were zero. PDSs effluent water quality parameters chloramines residual, dissolved oxygen, heterotrophic plate counts (HPCs), pH, alkalinity, and nitrogen species were monitored and found to vary as expected by stoichiometry associated with theoretical biological reactions excepting alkalinity. Nitrification was confirmed in the PDSs. The occurrence in the PDSs was not isolated to any particular source water. Ammonia for nitrification came from degraded chloramines, which was common among all finished waters. Consistent with nitrification trends of dissolved oxygen consumption, ammonia consumption, nitrite and nitrate production were clearly observed in the PDSs bulk water quality profiles. Trends of pH and alkalinity were less apparent. To control nitrification: residual was increased to 4.5 mg/L as Cl2 at 5:1 Cl2:NH3-N dosing ratio, and the HRT was reduced from 5 to 2 days. Elimination of the nitrification episode was achieved after a 1 week free chlorine burn.
280

Biostability In Drinking Water Distribution Systems Study At Pilot-scale

Le Puil, Michael 01 January 2004 (has links)
Biostability and related issues (e.g. nitrification) were investigated for 18 months in 18 pilot distribution systems, under various water quality scenarios. This study specifically investigated the impact of steady-state water changes on HPC levels in chlorinated and chloraminated distribution systems. Chlorination was more effective than chloramination in reducing HPC levels (1-2 log difference). There was a rapid increase in HPC corresponding to the change in steady-state water quality, which was observed in all PDS. Modeling effort demonstrated that HPC levels reached a maximum within five days after water quality change and return to initial level ten days after the change. Since alkalinity was used as a tracer of the steady-state water quality change, time to reach maximum HPC was related to a mixing model using alkalinity as a surrogate that confirmed alkalinity transition was complete in approximately eight days. Biostability was assessed by HPC levels, since no coliform were ever detected. It was observed that HPC levels would be above four logs if residual droped below 0.1-0.2 mg/L as Cl?, which is below the regulatory minimum of 0.6 mg/L as Cl?. Therefore bacterial proliferation is more likely to be controlled in distribution systems as long as residual regulatory requirements are met. An empirical modeling effort showed that residual, pipe material and temperature were the most important parameters in controlling HPC levels in distribution systems, residual being the only parameter that can be practically used by utilities to control biological stability in their distribution systems. Use of less reactive (i.e. with less chlorine demand) pipes is recommended in order to prevent residual depletion and subsequent bacterial proliferation.This study is investigated biofilm growth simultaneously with suspended growth under a wide range of water quality scenarios and pipe materials. It was found that increasing the degree of treatment led to reduction of biofilm density, except for reverse osmosis treated groundwater, which exerted the highest biofilm density of all waters. Biofilm densities on corrodible, highly reactive materials (e.g. unlined cast iron and galvanized steel) were significantly greater than on PVC and lined cast iron. Biofilm modeling showed that attached bacteria were most affected by temperature and much less by HRT, bulk HPC and residual. The model predicts biofilms will always be active for environments common to drinking water distribution systems. As American utilities do not control biofilms with extensive and costly AOC reduction, American utilities must maintain a strong residual to maintain biological integrity and stability in drinking water distribution systems.Nitrite and nitrate were considered the most suitable indicators for utilities to predict onset of a nitrification episode in the distribution system bulk liquid. DO and ammonia were correlated to production of nitrite and nitrate and therefore could be related to nitrification. However since ammonia and DO consumptions can be caused by other phenomena than nitrification (e.g. oxidation by disinfectant to nitrite and reduction at the pipe wall, respectively), these parameters are not considered indicators of nitrification.Ammonia-Oxidizing Bacteria (AOB) densities in the bulk phase correlated well with nitrite and nitrate production, reinforcing the fact that nitrite and nitrate are good monitoring tools to predict nitrification. Chloramine residual proved to be helpful in reducing nitrification in the bulk phase but has little effect on biofilm densities. As DO has been related to bacterial proliferation and nitrification, it can be a useful and inexpensive option for utilities in predicting biological instability, if monitored in conjunction with residual, nitrite and nitrate. Autotrophic (i.e. AOB) and heterotrophic (i.e. HPC) organisms were correlated in the bulk phase and biofilms.

Page generated in 0.1098 seconds