• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Situation Awareness for Advanced Driver-Assistance Systems

Chengxi Li (11530579) 22 November 2021 (has links)
<div>From prehistoric man who needs to be aware of the surrounding situations and hunt for food, to modern industry where machines and robots are programmed to explore the environment and accomplish assignments, situation awareness has always been an essential topic to everyone.</div><div><br></div><div>Advanced Driver-Assistance Systems (ADAS) is one of the modern technologies seeking effective solutions for driving safety. It also utilizes situation awareness model to interpret the driver's state in the environment and provide safe driving advice, with the potential to significantly reduce the traffic accident fatalities.</div><div><br></div><div>To enable situation awareness, an intelligent driving system needs to fulfill the following: (1) perceives the traffic elements in the environment, (2) comprehends the spatial-temporal interactions between a driver and other objects, and (3) projects the states of traffic elements to forecast future actions.</div><div><br></div><div>However, each level of situation awareness encounters its unique challenges in driving scenarios, for example, how to perceive vehicles in low-illuminated conditions? How to represent the complicated interactive relations in complicated driving situations? And how to anticipate the temporal dynamics of traffic elements and identify the where the potential risk comes from? To answer these questions, we explore situation awareness model for Advanced Driver-Assistance Systems at 3 levels: Perception, Comprehension and Projection. We discuss how to realize situation awareness based on three different computer vision tasks. We demonstrate that our proposed system is able to forecast the driver's operational intentions and identify risk objects to avoid hazards.</div>

Page generated in 0.0656 seconds