• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Traffic Operations at Intersections in Malfunction Flash Mode

Bansen, Justin Andrew 12 April 2006 (has links)
During a signal malfunction, traffic signals are operated in the flash mode. During this event, drivers are presented with one of two possible scenarios: (1) flashing yellow on the major street and flashing red on the minor street or (2) flashing red on all approaches. Yellow/red flash is typically the default mode utilized based on the expectation that red/red flash would produce an intolerable amount of delay. However, little research has been conducted to date on flashing operations, with exception of low-volume nighttime conditions. A traffic signal malfunction can occur during any time of the day, potentially placing the signal into flash mode under moderate to peak traffic volume conditions. In order to assess the safety implications of these events and improve the process by which the mode of flash (yellow/red versus red/red) is selected, the research contained in this study evaluated driver behavior and the operational characteristics of intersections operating in malfunction flash mode under a wide spectrum of traffic demands. Analysis of field data collected at thirteen study intersections in the Atlanta, Georgia area found that confusion exists among drivers approaching a signal in flash mode. The analysis found that a significant percentage of vehicles stop on a yellow indication. It was seen that an intersection flashing yellow/red could operate as a two-way stop or four-way stop, potentially transitioning between these two alternatives on a minute-by-minute basis. This creates an increased potential for crashes and further compounds the problem of driver expectancy by creating a constantly changing control environment. The stopping on yellow also introduces additional delay, which reduces the operational benefit of utilizing the yellow/red flash mode. Furthermore, a high level of traffic violations was observed for the flashing red indications for both yellow/red and red/red flashing operation. Based upon the study results, providing one consistent mode of flashing operation may be a reasonable solution to improving driver expectancy and safety. Red/red flashing operation is the preferred mode as it reduces vehicle speeds and the variability in the number of vehicles stopping, while improving driver expectancy.

Page generated in 0.0515 seconds