• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 19
  • 8
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 327
  • 327
  • 100
  • 67
  • 61
  • 56
  • 55
  • 48
  • 43
  • 39
  • 36
  • 34
  • 34
  • 32
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Movement and Structure of Atmospheric Populations of Fusarium

Lin, Binbin 23 May 2013 (has links)
Fusarium is one of the most important genera of fungi on earth. Many species of Fusarium are well-suited for atmospheric dispersal, yet little is known about their aerobiology. Previous research has shown that large-scale features known as atmospheric transport barriers (Lagrangian coherent structures) guide the transport and mixing of atmospheric populations of Fusarium. The overall goal of this work is to expand our knowledge on the movement and structure of atmospheric populations of Fusarium. The first objective was to monitor changes in colony forming units (CFUs) in atmospheric populations of Fusarium over small time intervals (10 min to several hours). We hypothesized that consecutive collections of Fusarium with unmanned aerial vehicles (UAVs) demonstrate small variations in colony counts. To test this hypothesis, sampling devices on UAVs were separated into two groups, four inner sampling devices opened during the first 10 minutes and four outer sampling devices opened during the second 10 minutes. Results indicated that (1) consecutive collections of Fusarium at 100 m demonstrated small variations in counts and (2) the similarity between collections decreased as the time between sampling intervals increased. The second objective was to determine the structure of atmospheric populations of Fusarium species and relate this to potential source regions. We hypothesized that diverse atmospheric populations of Fusarium are associated with multiple source regions. To test this hypothesis, Fusarium samples were collected with UAVs and identified to the level of species by sequencing a portion of the translation elongation factor 1-alpha gene (TEF-1•). Potential source regions were identified using the atmospheric transport model HYSPLIT. Results indicated that (1) diverse atmospheric populations of Fusarium appeared to be associated with multiple source regions, and (2) the number of Fusarium species collected with UAVs increased with back-trajectory distance of the sampled air. The third objective was to examine the associations between concentrations of populations of Fusarium at ground level (1 m) and in the lower atmosphere (100 m). We hypothesized that concentrations of Fusarium in the atmosphere vary between 1m and 100m. To test this hypothesis, Fusarium was collected with a Burkard volumetric sampler (BVS) and UAVs. Colony counts were converted to spore concentrations (spores per cubic meter of air). Sampling efficiency was used to correct spore concentrations. Results indicated that (1) the distribution of spore concentrations was similar for both samplers over different times of the day, (2) spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter, and (3) spore concentrations were generally higher with BVS samplers than those with UAVs for both hourly and seasonal data. The fourth objective was to assess the ability of strains of Fusarium collected in the lower atmosphere to cause plant disease. We hypothesized that certain isolates of Fusarium collected with UAVs cause plant diseases. To test this hypothesis, we randomly selected isolates of three different species (F. circinatum, F. avenaceum, and F. sporotrichioides) of Fusarium collected with UAVs to inoculate three different hosts (wheat, corn, and pine). Known Fusarium strains were obtained from J. Leslie at Kansas State University as controls. Results indicated showed that the three different isolates tested were able to cause plant diseases in three different hosts (wheat, corn, and pine), confirming that these were potential agents of disease. This work sets the stage for future work examining potential source regions, transport distances, and seasonal patterns of Fusarium. An increased understanding of the dynamics and population structure of plant pathogenic Fusarium in the lower atmosphere is essential for predicting the spread of plant disease and optimizing disease management strategies in the future. / Ph. D.
242

Grounding Drone Warfare: Imperial Entanglements, Technopolitics, and Ghostly States in the Tribal Areas, Pakistan

Tahir, Madiha January 2020 (has links)
How does a view from the ground reshape the analytics of US drone warfare? Through an ethnographic exploration of drone warfare from one of its sites of destruction—Pakistan and its borderlands known as the Tribal Areas—this dissertation troubles the notion of war-at-a-distance. Far from being at a remove, the war for many Pakistanis is in their neighborhoods, their fields, and their homes. Especially for ethnic Pashtuns who live amidst the drone war in the borderlands, attack drones are one element among a violent network—from Pakistani military helicopters to ground operations to armed guerrilla movements—that create radical disruptions. It is this dialectic between U.S. attacks and Pakistani state machinations that both produces ‘drone warfare’ and informs the analytics of Pashtuns and Pakistanis more generally vis-à-vis drone bombardment. By interrogating the relationship between drone attacks and the pluriverse of differentially distributed violence in the border zone, this dissertation traces the multi-scalar entanglements of the US imperial formation and the Pakistani state through which drone warfare and the ‘war on terror’ take shape in the Tribal Areas. Through an ethnographically situated account of the material, embodied geographies and conditions of the war zone, I show how these entanglements shape the geopolitics of the Pakistani state and position ethnic Pashtuns as multiply inflected: tribal-ized marginals, ethnic-ized citizens, and racialized transnational-ized targets of the ‘war on terror.’ In so doing, Grounding Drone Warfare shows that the remoteness of drone warfare is less an empirical reality than an authorizing self-narration of an imperial formation that prefers to frame itself as temporary and limited.
243

Effects of Duct Lip Shaping and Various Control Devices on the Hover and Forward Flight Performance of Ducted Fan UAVs

Graf, Will Edward 27 June 2005 (has links)
The military's desire for ducted fan vertical takeoff and landing (VTOL) unmanned aerial vehicles (UAVs) stems from the vehicles' relatively small size, safety in tight quarters, increased payload capacity for their size, and their ability to hover for surveillance missions. However, undesirable aerodynamic characteristics are associated with these vehicles in crosswinds, namely momentum drag and asymmetric duct lift. Because the duct itself, and not the fan, is the root cause of these unfavorable aerodynamic attributes, various lip shapes were tested to determine the effects of leading edge radius of curvature and duct wall thickness. It was found that a lip with a small leading edge radius performed best in forward flight and crosswind conditions, while the performance of a lip with a large leading edge radius was enhanced in static conditions. Through tuft flow visualization and static pressure measurements it was determined that the reason for the difference in performance between the two lips was due to flow separation on the interior of the duct lip surface. Control vanes positioned aft of the duct were tested as the primary attitude control for the vehicle. An empirical control vane model was created based on the static data for the control vanes, and it was applied to wind tunnel test results to determine the required control vane angle for trim. Wind tunnel testing showed the control vanes were capable of trimming out the adverse pitching moment generated by the duct, but at some flight speeds large vane deflections were necessary. Additional control devices placed at the lip of the duct and stabilizer vanes positioned aft of the duct were tested to reduce the amount of control vane deflection required for trim. It was found that the duct deflector control effector had the largest impact on the adverse pitching moment, while the stabilizer vanes were only effective at low crosswind velocities. / Master of Science
244

End plate gap effects on a half-wing model

Kuppa, Subrahmanyam 01 August 2012 (has links)
Differences in the aerodynamic performance data obtained at different test facilities were observed for the Wortmann FX-63-l37 airfoil. Earlier investigations found that the size of the hysteresis loop was affected by the tunnel environment and that single strut mounting of a three dimensional wing model interfered negligibly with the wing. Theoretical and experimental evaluations of a half wing model mounted with an end plate gap were done. Vortex panel method was used in the theoretical evaluation. The results from this indicated an effect of reduced aspect ratio with increase in end plate gap size. Tests were conducted in the VPI Stability Tunnel at low Reynolds numbers for different gap sizes including sealed gap. Results from the experiments showed that even very small gaps produce substantial changes in zero lift angle of attack (αu) and the change in αu, was reduced as Reynolds number increased. Sealed gap test results did not show such a behavior. Flow visualization of the flow through the gap showed a significant flow through the gap even at very low Reynolds number and small gap size. / Master of Science
245

The System Design of a Global Communications System for Military and Commercial use Utilizing High Altitude Unmanned Aerial Vehicles (UAVs) and Terrestrial Local Multipoint Distribution Service (LMDS) Sites

Banks, Bradley 12 May 2000 (has links)
This thesis proposes the design of the UAV-LMDS communication system for military and commercial use. The UAV-LMDS system is a digital, wireless communication system that provides service using unmanned aerial vehicles (UAVs) flying at 60,000 ft. acting as communication hubs. This thesis provides background information on UAV-LMDS system elements, a financial analysis, theory, link budgets, system component design and implementation issues. To begin the design, we develop link budgets that are used to characterize system parameters. We present detailed antenna designs for the antennas aboard the UAV. We also present communication equipment block diagrams. Included are technical details on military and commercial geostationary satellites used to link transmissions in the system. Implementation issues in the military system are discussed. Mobility and the effects of vegetation in the propagation path are investigated and a co-channel interference study is done. This thesis shows that by using UAVs and LMDS, a viable, broadband, wireless communications system can be created for military and commercial use. / Master of Science
246

Automated Landing Site Evaluation for Semi-Autonomous Unmanned Aerial Vehicles

Klomparens, Dylan 27 October 2008 (has links)
A system is described for identifying obstacle-free landing sites for a vertical-takeoff-and-landing (VTOL) semi-autonomous unmanned aerial vehicle (UAV) from point cloud data obtained from a stereo vision system. The relatively inexpensive, commercially available Bumblebee stereo vision camera was selected for this study. A "point cloud viewer" computer program was written to analyze point cloud data obtained from 2D images transmitted from the UAV to a remote ground station. The program divides the point cloud data into segments, identifies the best-fit plane through the data for each segment, and performs an independent analysis on each segment to assess the feasibility of landing in that area. The program also rapidly presents the stereo vision information and analysis to the remote mission supervisor who can make quick, reliable decisions about where to safely land the UAV. The features of the program and the methods used to identify suitable landing sites are presented in this thesis. Also presented are the results of a user study that compares the abilities of humans and computer-supported point cloud analysis in certain aspects of landing site assessment. The study demonstrates that the computer-supported evaluation of potential landing sites provides an immense benefit to the UAV supervisor. / Master of Science
247

Autonomous Aerial Localization of Radioactive Point Sources via Recursive Bayesian Estimation and Contour Analysis

Towler, Jerry Alwynne 25 July 2011 (has links)
The rapid, accurate determination of the positions and strengths of sources of dangerous radioactivity takes high priority after a catastrophic event to ensure the safety of personnel, civilians, and emergency responders. This thesis presents approaches and algorithms to autonomously investigate radioactive material using an unmanned aerial vehicle. Performing this autonomous analysis comprises five major steps: ingress from a base of operations to the danger zone, initial detection of radioactive material, measurement of the strength of radioactive emissions, analysis of the data to provide position and intensity estimates, and finally egress from the area of interest back to the launch site. In all five steps, time is of critical importance: faster responses promise potentially saved lives. A time-optimal ingress and egress path planning method solves the first and last steps. Vehicle capabilities and instrument sensitivity inform the development of an efficient search path within the area of interest. Two algorithms—a grid-based recursive Bayesian estimator and a novel radiation contour analysis method—are presented to estimate the position of radioactive sources using simple gross gamma ray event count data from a nondirectional radiation detector. The latter procedure also correctly estimates the number of sources present and their intensities. Ultimately, a complete unsupervised mission is developed, requiring minimal initial operator interaction, that provides accurate characterization of the radiation environment of an area of interest as quickly as reasonably possible. / Master of Science
248

Sequential Motion Estimation and Refinement for Applications of Real-time Reconstruction from Stereo Vision

Stefanik, Kevin Vincent 10 August 2011 (has links)
This paper presents a new approach to the feature-matching problem for 3D reconstruction by taking advantage of GPS and IMU data, along with a prior calibrated stereo camera system. It is expected that pose estimates and calibration can be used to increase feature matching speed and accuracy. Given pose estimates of cameras and extracted features from images, the algorithm first enumerates feature matches based on stereo projection constraints in 2D and then backprojects them to 3D. Then, a grid search algorithm over potential camera poses is proposed to match the 3D features and find the largest group of 3D feature matches between pairs of stereo frames. This approach will provide pose accuracy to within the space that each grid region covers. Further refinement of relative camera poses is performed with an iteratively re-weighted least squares (IRLS) method in order to reject outliers in the 3D matches. The algorithm is shown to be capable of running in real-time correctly, where the majority of processing time is taken by feature extraction and description. The method is shown to outperform standard open source software for reconstruction from imagery. / Master of Science
249

Collaborative Unmanned Air and Ground Vehicle Perception for Scene Understanding, Planning and GPS-denied Localization

Christie, Gordon A. 05 January 2017 (has links)
Autonomous robot missions in unknown environments are challenging. In many cases, the systems involved are unable to use a priori information about the scene (e.g. road maps). This is especially true in disaster response scenarios, where existing maps are now out of date. Areas without GPS are another concern, especially when the involved systems are tasked with navigating a path planned by a remote base station. Scene understanding via robots' perception data (e.g. images) can greatly assist in overcoming these challenges. This dissertation makes three contributions that help overcome these challenges, where there is a focus on the application of autonomously searching for radiation sources with unmanned aerial vehicles (UAV) and unmanned ground vehicles (UGV) in unknown and unstructured environments. The three main contributions of this dissertation are: (1) An approach to overcome the challenges associated with simultaneously trying to understand 2D and 3D information about the environment. (2) Algorithms and experiments involving scene understanding for real-world autonomous search tasks. The experiments involve a UAV and a UGV searching for potentially hazardous sources of radiation is an unknown environment. (3) An approach to the registration of a UGV in areas without GPS using 2D image data and 3D data, where localization is performed in an overhead map generated from imagery captured in the air. / Ph. D.
250

A Development Platform to Evaluate UAV Runtime Verification Through Hardware-in-the-loop Simulation

Rafeeq, Akhil Ahmed 17 June 2020 (has links)
The popularity and demand for safe autonomous vehicles are on the rise. Advances in semiconductor technology have led to the integration of a wide range of sensors with high-performance computers, all onboard the autonomous vehicles. The complexity of the software controlling the vehicles has also seen steady growth in recent years. Verifying the control software using traditional verification techniques is difficult and thus increases their safety concerns. Runtime verification is an efficient technique to ensure the autonomous vehicle's actions are limited to a set of acceptable behaviors that are deemed safe. The acceptable behaviors are formally described in linear temporal logic (LTL) specifications. The sensor data is actively monitored to verify its adherence to the LTL specifications using monitors. Corrective action is taken if a violation of a specification is found. An unmanned aerial vehicle (UAV) development platform is proposed for the validation of monitors on configurable hardware. A high-fidelity simulator is used to emulate the UAV and the virtual environment, thereby eliminating the need for a real UAV. The platform interfaces the emulated UAV with monitors implemented on configurable hardware and autopilot software running on a flight controller. The proposed platform allows the implementation of monitors in an isolated and scalable manner. Scenarios violating the LTL specifications can be generated in the simulator to validate the functioning of the monitors. / Master of Science / Safety is one of the most crucial factors considered when designing an autonomous vehicle. Modern vehicles that use a machine learning-based control algorithm can have unpredictable behavior in real-world scenarios that were not anticipated while training the algorithm. Verifying the underlying software code with all possible scenarios is a difficult task. Runtime verification is an efficient solution where a relatively simple set of monitors validate the decisions made by the sophisticated control software against a set of predefined rules. If the monitors detect an erroneous behavior, they initiate a predetermined corrective action. Unmanned aerial vehicles (UAVs), like drones, are a class of autonomous vehicles that use complex software to control their flight. This thesis proposes a platform that allows the development and validation of monitors for UAVs using configurable hardware. The UAV is emulated on a high-fidelity simulator, thereby eliminating the time-consuming process of flying and validating monitors on a real UAV. The platform supports the implementation of multiple monitors that can execute in parallel. Scenarios to violate rules and cause the monitors to trigger corrective actions can easily be generated on the simulator.

Page generated in 0.047 seconds