• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nora virus as a model to study persistent infection in Drosophila melanogaster

Habayeb, Mazen January 2009 (has links)
Drosophila melanogaster has been widely used as a model organism to study the immune responses against bacteria, fungi, parasites and viruses. Here, I present a D. melanogaster virus as a model to study persistent virus infections. I have discovered and characterized the Nora virus, a small picorna-like RNA virus able to persistently infect D. melanogaster. The Nora virus genome encodes four open reading frames; a feature not present in other picorna-like viruses. The Nora virus is not closely related to any other virus family, but rather is the first virus in a new family of picorna-like viruses. The major replicative proteins of this virus are encoded in the second open reading frame and the capsid proteins are encoded in the fourth open reading frame. The sequence of the capsid proteins are not obviously related to any other previously described protein. By looking at expressed sequence tags (EST) projects, we identified an EST sequence from the parasitic wasp Nasonia which appears to encode proteins that have sequence similarity to the Nora virus capsid proteins. I have shown that the Nora virus persists in the fly intestine however I did not observe serious pathological effects in the infected flies. The virus is shed through feces and the transmission occurs horizontally via the ingestion of virus-contaminated food. Moreover, I observed variability in the viral titers among single flies of the same infected stock. Some flies are able to clear the Nora virus but not others and this phenomenon seems to be titer-dependent. Surprisingly, none of the known Drosophila antiviral responses play a role against the Nora virus. In conclusion, my work shows that studying the Nora virus interaction with the Drosophila immune system can lead to new findings on viral persistence mechanisms of RNA viruses and of Drosophila viral innate immunity.

Page generated in 0.0274 seconds